Khan Mashal, Tariq Ayesha, Irshad Iram, Asghar Muhammad Adnan, Ahamad Tansir, Chen Ke
Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
Sci Rep. 2025 Jul 16;15(1):25708. doi: 10.1038/s41598-025-10748-x.
This study introduces a new series of organic compounds (PPH1-PPH8) derived from a pyridine dipyrrolide (PDP) core, aimed at enhancing the efficacy of organic solar cells. Their light absorption and charge transport capabilities were improved by altering the terminal groups of a reference molecule (PPHR) with strong electron-withdrawing units. The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed at the M06/6-311G(d, p) level to examine the electronic and photovoltaic features of the designed chromophores. The findings indicated a notable redshift in the absorption spectra, broadening the absorption range from 562.874 to 617.913 nm accompanied by a substantial decrease in the energy gap from 2.677 to 2.468 eV in PPH1-PPH8. These results indicated enhanced solar light absorption due to end-capped modification. Moreover, these compounds demonstrated lower exciton binding energies (0.460-0.509 eV), signifying effective charge separation and improved exciton dissociation. Calculations of open-circuit voltage (V), utilizing the standard acceptor (PCBM), further validated their photovoltaic potential. Electron-hole analysis identified PPH5 as a highly promising candidate, demonstrating significant spatial separation of charge carriers. Therefore, this research study presents a novel class of PDP-based chromophores with tailored optoelectronic characteristics, providing significant insights for the advancement of next-generation organic photovoltaic materials.
本研究介绍了一系列源自吡啶二吡咯(PDP)核心的新型有机化合物(PPH1-PPH8),旨在提高有机太阳能电池的效率。通过用强吸电子单元改变参考分子(PPHR)的端基,改善了它们的光吸收和电荷传输能力。采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)在M06/6-311G(d, p)水平上研究了所设计发色团的电子和光伏特性。研究结果表明,PPH1-PPH8的吸收光谱出现了显著的红移,吸收范围从562.874纳米拓宽到617.913纳米,同时能隙从2.677电子伏特大幅降至2.468电子伏特。这些结果表明,端基修饰增强了太阳光吸收。此外,这些化合物表现出较低的激子结合能(0.460-0.509电子伏特),这意味着有效的电荷分离和激子解离得到改善。利用标准受体(PCBM)对开路电压(V)的计算进一步验证了它们的光伏潜力。电子-空穴分析确定PPH5是一个非常有前途的候选物,显示出电荷载流子的显著空间分离。因此,本研究提出了一类具有定制光电特性的新型基于PDP的发色团,为下一代有机光伏材料的发展提供了重要见解。