Schindler Magdalena, Feregrino Christian, Aldrovandi Silvia, Lo Bai-Wei, Monaco Anna A, Ringel Alessa R, Morales Ariadna E, Zehnder Tobias, Behncke Rose Yinghan, Glaser Juliane, Barclay Alexander, Andrey Guillaume, Kragesteen Bjørt K, Hägerling René, Haas Stefan A, Vingron Martin, Ulitsky Igor, Marti-Renom Marc A, Hechavarria Julio, Fasel Nicolas, Hiller Michael, Lupiáñez Darío G, Mundlos Stefan, Real Francisca M
RG Development and Disease, Max-Planck Institute for Molecular Genetics, Berlin, Germany.
Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Nat Ecol Evol. 2025 Jul 16. doi: 10.1038/s41559-025-02780-x.
Bats are the only mammals capable of self-powered flight, an evolutionary innovation based on the transformation of forelimbs into wings. The bat wing is characterized by an extreme elongation of the second to fifth digits with a wing membrane called the chiropatagium connecting them. Here we investigated the developmental and cellular origin of this structure by comparing bat and mouse limbs using omics tools and single-cell analyses. Despite the substantial morphological differences between the species, we observed an overall conservation of cell populations and gene expression patterns including interdigital apoptosis. Single-cell analyses of micro-dissected embryonic chiropatagium identified a specific fibroblast population, independent of apoptosis-associated interdigital cells, as the origin of this tissue. These distal cells express a conserved gene programme including the transcription factors MEIS2 and TBX3, which are commonly known to specify and pattern the early proximal limb. Transgenic ectopic expression of MEIS2 and TBX3 in mouse distal limb cells resulted in the activation of genes expressed during wing development and phenotypic changes related to wing morphology, such as the fusion of digits. Our results elucidate fundamental molecular mechanisms of bat wing development and illustrate how drastic morphological changes can be achieved through repurposing of existing developmental programmes during evolution.
蝙蝠是唯一能够进行自主飞行的哺乳动物,这种进化上的创新是基于前肢转变为翅膀而实现的。蝙蝠的翅膀以第二至第五指极度延长为特征,并有一层名为翼膜的翅膜将它们连接起来。在这里,我们通过使用组学工具和单细胞分析比较蝙蝠和小鼠的肢体,研究了这种结构的发育和细胞起源。尽管这两个物种在形态上存在显著差异,但我们观察到细胞群体和基因表达模式总体上是保守的,包括指间凋亡。对显微解剖的胚胎翼膜进行单细胞分析,确定了一个特定的成纤维细胞群体,它独立于与凋亡相关的指间细胞,是这种组织的起源。这些远端细胞表达一个保守的基因程序,包括转录因子MEIS2和TBX3,它们通常在早期近端肢体的特化和模式形成中发挥作用。在小鼠远端肢体细胞中对MEIS2和TBX3进行转基因异位表达,导致了翅膀发育过程中表达的基因被激活,以及与翅膀形态相关的表型变化,如指的融合。我们的研究结果阐明了蝙蝠翅膀发育的基本分子机制,并说明了在进化过程中如何通过重新利用现有的发育程序来实现剧烈的形态变化。