文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化大型肝细胞癌的动脉内治疗选择:基于协变量交互分析的深度学习方法

Refining Intra-Arterial Therapy Selection for Large Hepatocellular Carcinoma: A Deep Learning Approach Based on Covariate Interaction Analysis.

作者信息

An Chao, Li Lei, Luo Yang, Zuo Mengxuan, Liu Wendao, Li Chengzhi, Wu Peihong

机构信息

Department of Minimal Invasive Intervention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.

Department of Interventional Radiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong, 266042, People's Republic of China.

出版信息

J Hepatocell Carcinoma. 2025 Jul 11;12:1393-1405. doi: 10.2147/JHC.S532116. eCollection 2025.


DOI:10.2147/JHC.S532116
PMID:40672044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12264350/
Abstract

BACKGROUND: Hepatocellular carcinoma (HCC) is a major global health burden, with most patients presenting at advanced stages, limiting treatment options to intra-arterial therapy (IAT) such as transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC). However, optimizing IAT selection for large HCC remains challenging due to tumor heterogeneity and varying patient responses. AIM: To develop and validate a deep learning (DL) model for guidance of decision-making between TACE and HAIC for unresectable HCC. METHODS: We conducted a retrospective, multi-center study involving 900 patients with large HCC treated with IATs. The DEep Learning for Interaction and Covariate Analysis in Intra-arterial Therapy SElection (DELICAITE) model integrates deep convolutional neural networks (DCNN) with covariate interaction analysis. The model was trained on dual-modal clinical and imaging data to predict treatment response and was validated using prospective and independent external validation cohorts. RESULTS: The DELICAITE model demonstrated superior discriminative ability and accuracy in predicting progressive disease (PD) in both internal and external test sets, with AUCs of 0.756, 0.664, and 0.701, respectively. Patients classified by the model into the "Maintain" group showed significantly longer overall survival (OS) compared to the "Alter" group (11.3 months vs 8.1 months, < 0.001). The model's performance was further supported by its ability to stratify patients into subgroups most likely to benefit from TACE or HAIC. CONCLUSION: The DELICAITE model provides a precise and innovative approach to refine IAT schemes for large HCC, offering clinicians a reliable tool to select the most suitable treatment option and potentially improve patient survival outcomes.

摘要

背景:肝细胞癌(HCC)是一项重大的全球健康负担,大多数患者就诊时已处于晚期,这使得治疗选择局限于动脉内治疗(IAT),如经动脉化疗栓塞(TACE)和肝动脉灌注化疗(HAIC)。然而,由于肿瘤异质性和患者反应各异,为大型HCC优化IAT选择仍然具有挑战性。 目的:开发并验证一种深度学习(DL)模型,用于指导不可切除HCC患者在TACE和HAIC之间进行决策。 方法:我们进行了一项回顾性、多中心研究,纳入了900例接受IAT治疗的大型HCC患者。动脉内治疗选择中的深度学习交互与协变量分析(DELICAITE)模型将深度卷积神经网络(DCNN)与协变量交互分析相结合。该模型在双模态临床和影像数据上进行训练以预测治疗反应,并使用前瞻性和独立的外部验证队列进行验证。 结果:DELICAITE模型在内部和外部测试集中预测疾病进展(PD)方面表现出卓越的鉴别能力和准确性,其曲线下面积(AUC)分别为0.756、0.664和0.701。与“改变”组相比,被该模型分类为“维持”组的患者总生存期(OS)显著更长(11.3个月对8.1个月,<0.001)。该模型将患者分层为最可能从TACE或HAIC中获益的亚组的能力进一步支持了其性能。 结论:DELICAITE模型为优化大型HCC的IAT方案提供了一种精确且创新的方法,为临床医生提供了一个可靠的工具来选择最合适的治疗方案,并有可能改善患者的生存结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/c17fce6f45e2/JHC-12-1393-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/58b39af4f9c7/JHC-12-1393-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/e9a761aea104/JHC-12-1393-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/029e6d3da4ab/JHC-12-1393-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/c17fce6f45e2/JHC-12-1393-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/58b39af4f9c7/JHC-12-1393-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/e9a761aea104/JHC-12-1393-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/029e6d3da4ab/JHC-12-1393-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dcd/12264350/c17fce6f45e2/JHC-12-1393-g0004.jpg

相似文献

[1]
Refining Intra-Arterial Therapy Selection for Large Hepatocellular Carcinoma: A Deep Learning Approach Based on Covariate Interaction Analysis.

J Hepatocell Carcinoma. 2025-7-11

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
A Contrast-Enhanced Ultrasound Cine-Based Deep Learning Model for Predicting the Response of Advanced Hepatocellular Carcinoma to Hepatic Arterial Infusion Chemotherapy Combined With Systemic Therapies.

Cancer Sci. 2025-7

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Comparison of different adjuvant therapy regimen efficacies in patients with high risk of recurrence after radical resection of hepatocellular carcinoma.

J Cancer Res Clin Oncol. 2023-9

[6]
Transarterial (chemo)embolisation versus systemic chemotherapy for colorectal cancer liver metastases.

Cochrane Database Syst Rev. 2024-8-9

[7]
Comparison of the efficacy and safety of TACE-HAIC-MTTs-ICIs and TACE-MTTs-ICIs in the hepatocellular carcinoma: a prognostic analysis based on the dynamic changes of serum AFP.

Int J Surg. 2025-6-20

[8]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[9]
External beam radiotherapy for unresectable hepatocellular carcinoma.

Cochrane Database Syst Rev. 2017-3-7

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

本文引用的文献

[1]
Machine learning-based decision support model for selecting intra-arterial therapies for unresectable hepatocellular carcinoma: A national real-world evidence-based study.

Br J Cancer. 2024-9

[2]
A multitask deep learning radiomics model for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion chemotherapy.

Radiol Med. 2023-12

[3]
Innovations in Deep Learning to Predict Individual Risk and Treatment Outcome.

Radiology. 2023-6

[4]
Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy.

Eur Radiol. 2023-7

[5]
Development of a Model to Predict Liver Decompensation prior to Transarterial Chemoembolization Refractoriness in Patients with Intermediate-Stage Hepatocellular Carcinoma.

GE Port J Gastroenterol. 2021-11-30

[6]
Hepatic arterial infusion chemotherapy and sequential ablation treatment in large hepatocellular carcinoma.

Int J Hyperthermia. 2022

[7]
A Hybrid Machine Learning Model Based on Semantic Information Can Optimize Treatment Decision for Naïve Single 3-5-cm HCC Patients.

Liver Cancer. 2022-1-28

[8]
Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma.

J Hepatol. 2022-6

[9]
Cost-Effectiveness Analysis of Hepatic Arterial Infusion Chemotherapy of Infusional Fluorouracil, Leucovorin, and Oxaliplatin Versus Transarterial Chemoembolization in Patients With Large Unresectable Hepatocellular Carcinoma.

Front Pharmacol. 2022-4-26

[10]
Drug-Eluting Bead Transarterial Chemoembolization Combined with FOLFOX-Based Hepatic Arterial Infusion Chemotherapy for Large or Huge Hepatocellular Carcinoma.

J Hepatocell Carcinoma. 2021-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索