Petti Samantha, Martí-Gómez Carlos, Kinney Justin B, Zhou Juannan, McCandlish David M
Department of Mathematics, Tufts University, Medford, MA, 02155.
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724.
bioRxiv. 2025 Jul 11:2025.04.26.650699. doi: 10.1101/2025.04.26.650699.
Mappings from biological sequences (DNA, RNA, protein) to quantitative measures of sequence functionality play an important role in contemporary biology. We are interested in the related tasks of (i) inferring predictive sequence-to-function maps and (ii) decomposing sequence-function maps to elucidate the contributions of individual subsequences. Because each sequence-function map can be written as a weighted sum over subsequences in multiple ways, meaningfully interpreting these weights requires "gauge-fixing," i.e., defining a unique representation for each map. Recent work has established that most existing gauge-fixed representations arise as the unique solutions to -regularized regression in an overparameterized "weight space" where the choice of regularizer defines the gauge. Here, we establish the relationship between regularized regression in overparameterized weight space and Gaussian process approaches that operate in "function space," i.e. the space of all real-valued functions on a finite set of sequences. We disentangle how weight space regularizers both impose an implicit prior on the learned function and restrict the optimal weights to a particular gauge. We also show how to construct regularizers that correspond to arbitrary explicit Gaussian process priors combined with a wide variety of gauges. Next, we derive the distribution of gauge-fixed weights implied by the Gaussian process posterior and demonstrate that even for long sequences this distribution can be efficiently computed for product-kernel priors using a kernel trick. Finally, we characterize the implicit function space priors associated with the most common weight space regularizers. Overall, our framework unifies and extends our ability to infer and interpret sequence-function relationships.
从生物序列(DNA、RNA、蛋白质)到序列功能定量度量的映射在当代生物学中起着重要作用。我们对以下相关任务感兴趣:(i)推断预测性的序列到功能映射,以及(ii)分解序列 - 功能映射以阐明各个子序列的贡献。由于每个序列 - 功能映射可以多种方式写成子序列的加权和,有意义地解释这些权重需要“规范固定”,即,为每个映射定义唯一表示。最近的工作表明,大多数现有的规范固定表示是在过参数化的“权重空间”中作为 - 正则化回归的唯一解出现的,其中正则化器的选择定义了规范。在这里,我们建立了过参数化权重空间中的正则化回归与在“函数空间”(即有限序列集上所有实值函数的空间)中运行的高斯过程方法之间的关系。我们弄清楚了权重空间正则化器如何既对学习到的函数施加隐式先验,又将最优权重限制在特定规范内。我们还展示了如何构造与任意显式高斯过程先验以及各种规范相对应的正则化器。接下来,我们推导高斯过程后验所隐含的规范固定权重的分布,并证明即使对于长序列,使用核技巧也可以有效地计算乘积核先验的这种分布。最后,我们刻画了与最常见权重空间正则化器相关的隐式函数空间先验。总体而言,我们的框架统一并扩展了我们推断和解释序列 - 功能关系的能力。