Suppr超能文献

MoCHI:用于拟合可解释模型并从深度突变扫描数据中量化能量、能量耦合、上位性和变构的神经网络。

MoCHI: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis, and allostery from deep mutational scanning data.

作者信息

Faure Andre J, Lehner Ben

机构信息

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Current Address: ALLOX, PRBB Building, C/Dr. Aiguader, 88, 08003, Barcelona, Spain.

出版信息

Genome Biol. 2024 Dec 2;25(1):303. doi: 10.1186/s13059-024-03444-y.

Abstract

We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data. When a user-specified model is unavailable, global nonlinearities (epistasis) can be estimated from the data. MoCHI also leverages ensemble, background-averaged epistasis to learn sparse models that can incorporate higher-order epistatic terms. MoCHI is freely available as a Python package ( https://github.com/lehner-lab/MoCHI ) relying on the PyTorch machine learning framework and allows biophysical measurements at scale, including the construction of allosteric maps of proteins.

摘要

我们展示了MoCHI,这是一种使用深度突变扫描数据来拟合可解释模型的工具。MoCHI可以推断自由能变化以及指定生物物理模型的相互作用项(能量耦合),包括从多模态表型数据中推断。当用户指定的模型不可用时,可以从数据中估计全局非线性(上位性)。MoCHI还利用集成的、背景平均的上位性来学习可以纳入高阶上位性项的稀疏模型。MoCHI作为一个依赖于PyTorch机器学习框架的Python包(https://github.com/lehner-lab/MoCHI )免费提供,并允许进行大规模的生物物理测量,包括构建蛋白质的别构图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5992/11610129/94cfad2e139f/13059_2024_3444_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验