Fricker Ashwana D, Barnes Abigail L, Henzi Arno, Duran Luis E, Flores Gilberto E
bioRxiv. 2025 Jul 7:2025.07.07.663590. doi: 10.1101/2025.07.07.663590.
The infant gut microbiota is strongly influenced by human milk oligosaccharides (HMOs), a set of glycans that comprise a large constituent of milk and reach the large intestine intact. During growth on HMOs, bacteria produce beneficial metabolites including short chain fatty acids (SCFAs) that are important for host health. Select gut microorganisms have unique sets of enzymes capable of catabolizing distinct HMOs leading to host-specific differences in glycan access, and ultimately differences in SCFA production. Here we cultivated three species of human-associated an early life commensal that is correlated with a healthy metabolic status in adults, on five individual HMOs in two different media backgrounds. Analysis of growth rates, growth yield, metabolic output, and individual HMO consumption through time revealed differences across species that was influenced by growth media. Most notably, CSUN-19 has robust growth in both media backgrounds paired with nearly complete degradation of all HMOs. Across all conditions, overall SCFA production was generally commensurate with growth, but most strikingly, A. MucT and A. CSUN-19 produced succinate only when grown in the presence of N-acetyl glucosamine, but not with mucin. The third organism tested, CSUN-17 had weaker growth, lower degradation of HMOs, but higher production of propionate in media containing N-acetyl glucosamine. Interactions between and HMOs can influence colonization of other early life commensals, potentially influencing health outcomes throughout life. This study highlights the importance of characterizing growth of individual species on distinct HMO leading to fermentation into organic acids.
are a widely distributed bacterial genus found in the healthy human gut that are capable of degrading host-produced glycans including human milk oligosaccharides (HMOs). Previous end-point experiments demonstrated varying degradation efficiencies across species with displaying enhanced growth on multiple HMOs. However, the temporal dynamics and growth preferences when offered substrate choice across the lineage are unknown. Here, we characterized the temporal growth dynamics, HMO catabolism, and metabolic output of three species across five HMOs and two media backgrounds. Specifically, we demonstrate that one species, CSUN-19, has robust growth independent of media background with nearly complete degradation of all HMOs tested. Overall, the species-, HMO-, and media-specific response of may impact the colonization success of each species, ultimately influencing host-microbe and microbe-microbe interactions in the developing infant gut microbiome.
婴儿肠道微生物群受到人乳寡糖(HMOs)的强烈影响,HMOs是一组聚糖,是乳汁的重要组成部分,并能完整地到达大肠。在以HMOs为营养源生长的过程中,细菌会产生有益的代谢产物,包括对宿主健康很重要的短链脂肪酸(SCFAs)。特定的肠道微生物具有独特的酶系,能够分解不同的HMOs,导致宿主在聚糖利用上存在差异,最终在SCFA产生上也存在差异。在这里,我们在两种不同的培养基背景下,用五种单独的HMOs培养了三种与人类相关的早期共生菌,其中一种早期共生菌与成年人健康的代谢状态相关。通过对生长速率、生长产量、代谢产物以及随时间变化的单个HMO消耗情况进行分析,发现不同物种之间存在差异,且这种差异受到生长培养基的影响。最显著的是,CSUN - 19在两种培养基背景下都能强劲生长,并且几乎能完全降解所有的HMOs。在所有条件下,总的SCFA产生量通常与生长情况相称,但最引人注目的是,只有在N - 乙酰葡糖胺存在的情况下,MucT和CSUN - 19在以粘蛋白为营养源生长时才会产生琥珀酸。测试的第三种微生物CSUN - 17生长较弱,对HMOs的降解能力较低,但在含有N - 乙酰葡糖胺的培养基中丙酸产量较高。微生物与HMOs之间的相互作用会影响其他早期共生菌的定殖,可能会影响一生的健康状况。这项研究强调了表征单个微生物物种在不同HMOs上生长并发酵成有机酸过程的重要性。
微生物是在健康人类肠道中广泛分布 的细菌属,能够降解包括人乳寡糖(HMOs)在内的宿主产生的聚糖。之前的终点实验表明,不同物种对HMOs的降解效率各不相同,其中某些物种在多种HMOs上生长增强。然而,当在整个菌系中提供底物选择时,其时间动态和生长偏好尚不清楚。在这里,我们表征了三种微生物在五种HMOs和两种培养基背景下的时间生长动态、HMO分解代谢和代谢产物。具体而言,我们证明了其中一个物种CSUN - 19,无论培养基背景如何都能强劲生长,并且几乎能完全降解所有测试的HMOs。总体而言,微生物的物种特异性、HMO特异性和培养基特异性反应可能会影响每个物种的定殖成功,最终影响发育中的婴儿肠道微生物群中的宿主 - 微生物和微生物 - 微生物相互作用。