Amarante Anderson Mendonça, de Oliveira Daniel Martins, de Souza Marcos Paulo Nicolich Camargo, Fonseca-Oliveira Manoel, Galina Antonio, Rosignoli Serena, Arcanjo Angélica Fernandes, Moraes Bruno, Paiardini Alessandro, Rotili Dante, Li Yasumura Juan Diego de Paula, Henaut-Jacobs Sarah, Venancio Thiago Motta, Uhl Marcelle, Nunes-da-Fonseca Rodrigo, Parizi Luis Fernando, Vaz Junior Itabajara da Silva, Mermelstein Claudia Dos Santos, Tirloni Lucas, Logullo Carlos, Fantappié Marcelo Rosado
Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil.
Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil.
bioRxiv. 2025 Jul 11:2025.07.11.662657. doi: 10.1101/2025.07.11.662657.
Epigenetic modifications are long-lasting changes to the genome that influence a cell's transcriptional potential, thereby altering its function. These modifications can trigger adaptive responses that impact protein expression and various cellular processes, including differentiation and growth. The primary epigenetic mechanisms identified to date include DNA and RNA methylation, histone modifications, and microRNA-mediated regulation of gene expression. The intricate crosstalk among these mechanisms makes epigenetics a compelling field for the development of novel control strategies, particularly through the use of epigenetic drugs targeting arthropod vectors such as ticks. In this study, we identified the orthologs of canonical histone-modifying enzymes, along with components of the machinery responsible for mC and mA-DNA, and mA-RNA methylations. We further characterized their transcriptional profiles and enzymatic activities during embryonic development. To explore the functional consequences of epigenetic regulation in , we evaluated the effects of various epigenetic inhibitors on the BME26 tick embryonic cell line. Molecular docking simulations were performed to predict the binding mode of these inhibitors to tick enzymes, followed by assessment of their effects on cell viability and morphology. Tick cells exposed to these inhibitors exhibited phenotypic and molecular alterations. Notably, we observed higher levels of DNA methylation in the mitochondrial genome compared to nuclear DNA. Inhibition of DNA methylation using 5'-azacytidine (5'-AZA) was associated with increased activity of the mitochondrial electron transport chain and ATP synthesis, but reduced cellular proliferation. Our findings highlight the importance of epigenetic regulation during tick embryogenesis and suggest that targeting these pathways may offer a novel and promising strategy for tick control.
表观遗传修饰是基因组的长期变化,影响细胞的转录潜能,从而改变其功能。这些修饰可触发影响蛋白质表达和各种细胞过程(包括分化和生长)的适应性反应。迄今为止确定的主要表观遗传机制包括DNA和RNA甲基化、组蛋白修饰以及微小RNA介导的基因表达调控。这些机制之间复杂的相互作用使得表观遗传学成为开发新型控制策略的一个引人注目的领域,特别是通过使用针对蜱等节肢动物载体的表观遗传药物。在本研究中,我们鉴定了经典组蛋白修饰酶的直系同源物,以及负责mC和mA-DNA以及mA-RNA甲基化的机制的组成部分。我们进一步表征了它们在胚胎发育过程中的转录谱和酶活性。为了探索表观遗传调控在蜱中的功能后果,我们评估了各种表观遗传抑制剂对BME26蜱胚胎细胞系的影响。进行分子对接模拟以预测这些抑制剂与蜱酶的结合模式,并随后评估它们对细胞活力和形态的影响。暴露于这些抑制剂的蜱细胞表现出表型和分子改变。值得注意的是,我们观察到线粒体基因组中的DNA甲基化水平高于核DNA。使用5'-氮杂胞苷(5'-AZA)抑制DNA甲基化与线粒体电子传递链活性增加和ATP合成增加有关,但细胞增殖减少。我们的研究结果突出了表观遗传调控在蜱胚胎发生过程中的重要性,并表明针对这些途径可能为蜱的控制提供一种新颖且有前景的策略。