Vasnarungruengkul Pavee, Anaya Michael A, Lam Annie W, Gonzalez Elisa, Zhang An, Wang Maxine L, Wojtowicz Woj M, Zinn Kai, Vielmetter Jost
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
bioRxiv. 2025 Jul 13:2025.07.13.664612. doi: 10.1101/2025.07.13.664612.
The advancement of automation technologies has helped to enable a surge in large-scale screening efforts across fields such as molecular biology, protein biochemistry, cell biology, and structural biology. In the context of this "omics"-driven research, there is a need to generate automation platforms that are more flexible and less expensive, so that they can be utilized for basic research conducted by small groups. A key challenge in automation lies in developing methods that can replicate fine motor techniques that are normally performed manually by researchers at the bench. We are engaged in a large-scale project to map interactions among human cell-surface and secreted proteins and assess their effects on cells. This project involves production of a library of more than 2000 recombinant His-tagged fusion proteins secreted from transfected Expi293 cells. To execute such a project with a small group at an academic institution required construction of an affordable automated system that could also be used by other investigators. This led us to develop a high-throughput, 96-well format automation platform for end-to-end protein production. The workflow includes transformation of E. coli, plasmid DNA preparation, transient transfection, protein purification, desalting and buffer exchange, protein quantification, and normalization of protein concentrations, resulting in assay-ready proteins. The system is built around an in-house engineered modular robotic platform that integrates liquid handling with a suite of interchangeable 'plug-and-play' mobile enclosed device modules. Housed within a BSL-2 sterile environment, the platform enables flexible, fully automated workflows and can be readily customized for diverse user-defined protocols.
自动化技术的进步推动了分子生物学、蛋白质生物化学、细胞生物学和结构生物学等领域大规模筛选工作的激增。在这种“组学”驱动的研究背景下,需要生成更灵活且成本更低的自动化平台,以便它们能够用于小团队进行的基础研究。自动化的一个关键挑战在于开发能够复制研究人员通常在实验台上手动执行的精细操作技术的方法。我们正在参与一个大型项目,旨在绘制人类细胞表面和分泌蛋白之间的相互作用图谱,并评估它们对细胞的影响。该项目涉及生产一个由超过2000种从转染的Expi293细胞分泌的重组His标签融合蛋白组成的文库。要在学术机构的一个小团队中执行这样一个项目,需要构建一个价格合理且其他研究人员也能使用的自动化系统。这促使我们开发了一个用于端到端蛋白质生产的高通量96孔格式自动化平台。工作流程包括大肠杆菌转化、质粒DNA制备、瞬时转染、蛋白质纯化、脱盐和缓冲液交换、蛋白质定量以及蛋白质浓度标准化,最终得到可供检测的蛋白质。该系统围绕一个内部设计的模块化机器人平台构建,该平台将液体处理与一套可互换的“即插即用”移动封闭设备模块集成在一起。该平台置于生物安全二级无菌环境中,能够实现灵活、全自动的工作流程,并且可以很容易地根据不同的用户定义协议进行定制。