Pershad Yash, Nandi Tarak N, Van Amburg Joseph C, Parker Alyssa C, Ostrowski Luiza, Giannini Hannah K, Ong David, Heimlich J Brett, Obeng Esther A, Ericson Katrin, Agarwal Anupriya, Madduri Ravi K, Bick Alexander G
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
bioRxiv. 2025 Jul 12:2025.07.08.663754. doi: 10.1101/2025.07.08.663754.
The application of transfer learning models to large scale single-cell datasets has enabled the development of single-cell foundation models (scFMs) that can predict cellular responses to perturbations in silico. Although these predictions can be experimentally tested, current scFMs are unable to "close the loop" and learn from these experiments to create better predictions. Here, we introduce a "closed-loop" framework that extends the scFM by incorporating perturbation data during model fine-tuning. Our closed-loop model improves prediction accuracy, increasing positive predictive value in the setting of T-cell activation three-fold. We applied this model to RUNX1-familial platelet disorder, a rare pediatric blood disorder and identified two therapeutic targets (mTOR and CD74-MIF signaling axis) and two novel pathways (protein kinase C and phosphoinositide 3-kinase). This work establishes that iterative incorporation of experimental data to foundation models enhances biological predictions, representing a crucial step toward realizing the promise of "virtual cell" models for biomedical discovery.
将迁移学习模型应用于大规模单细胞数据集,已促成了单细胞基础模型(scFMs)的开发,这些模型能够在计算机上预测细胞对扰动的反应。尽管这些预测可以通过实验进行验证,但当前的scFMs无法“闭环”,也无法从这些实验中学习以做出更好的预测。在此,我们引入了一个“闭环”框架,该框架通过在模型微调期间纳入扰动数据来扩展scFM。我们的闭环模型提高了预测准确性,在T细胞激活的情况下,阳性预测值提高了三倍。我们将此模型应用于RUNX1家族性血小板疾病(一种罕见的儿科血液疾病),并确定了两个治疗靶点(mTOR和CD74-MIF信号轴)以及两条新途径(蛋白激酶C和磷脂酰肌醇3激酶)。这项工作表明,将实验数据迭代纳入基础模型可增强生物学预测,这是朝着实现“虚拟细胞”模型在生物医学发现中的前景迈出的关键一步。
2025-1
Comput Methods Programs Biomed. 2025-6-21
Autism Adulthood. 2024-12-2
BMC Genomics. 2025-4-23
Nat Commun. 2025-2-17
Nat Methods. 2024-8