文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

闭环:教导单细胞基础模型从扰动中学习。

Closing the loop: Teaching single-cell foundation models to learn from perturbations.

作者信息

Pershad Yash, Nandi Tarak N, Van Amburg Joseph C, Parker Alyssa C, Ostrowski Luiza, Giannini Hannah K, Ong David, Heimlich J Brett, Obeng Esther A, Ericson Katrin, Agarwal Anupriya, Madduri Ravi K, Bick Alexander G

机构信息

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.

出版信息

bioRxiv. 2025 Jul 12:2025.07.08.663754. doi: 10.1101/2025.07.08.663754.


DOI:10.1101/2025.07.08.663754
PMID:40672312
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12265564/
Abstract

The application of transfer learning models to large scale single-cell datasets has enabled the development of single-cell foundation models (scFMs) that can predict cellular responses to perturbations in silico. Although these predictions can be experimentally tested, current scFMs are unable to "close the loop" and learn from these experiments to create better predictions. Here, we introduce a "closed-loop" framework that extends the scFM by incorporating perturbation data during model fine-tuning. Our closed-loop model improves prediction accuracy, increasing positive predictive value in the setting of T-cell activation three-fold. We applied this model to RUNX1-familial platelet disorder, a rare pediatric blood disorder and identified two therapeutic targets (mTOR and CD74-MIF signaling axis) and two novel pathways (protein kinase C and phosphoinositide 3-kinase). This work establishes that iterative incorporation of experimental data to foundation models enhances biological predictions, representing a crucial step toward realizing the promise of "virtual cell" models for biomedical discovery.

摘要

将迁移学习模型应用于大规模单细胞数据集,已促成了单细胞基础模型(scFMs)的开发,这些模型能够在计算机上预测细胞对扰动的反应。尽管这些预测可以通过实验进行验证,但当前的scFMs无法“闭环”,也无法从这些实验中学习以做出更好的预测。在此,我们引入了一个“闭环”框架,该框架通过在模型微调期间纳入扰动数据来扩展scFM。我们的闭环模型提高了预测准确性,在T细胞激活的情况下,阳性预测值提高了三倍。我们将此模型应用于RUNX1家族性血小板疾病(一种罕见的儿科血液疾病),并确定了两个治疗靶点(mTOR和CD74-MIF信号轴)以及两条新途径(蛋白激酶C和磷脂酰肌醇3激酶)。这项工作表明,将实验数据迭代纳入基础模型可增强生物学预测,这是朝着实现“虚拟细胞”模型在生物医学发现中的前景迈出的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/f4ab1f06f44e/nihpp-2025.07.08.663754v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/f85e0490e41d/nihpp-2025.07.08.663754v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/2ed1c9f0e139/nihpp-2025.07.08.663754v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/c5d48ef7adc6/nihpp-2025.07.08.663754v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/f4ab1f06f44e/nihpp-2025.07.08.663754v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/f85e0490e41d/nihpp-2025.07.08.663754v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/2ed1c9f0e139/nihpp-2025.07.08.663754v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/c5d48ef7adc6/nihpp-2025.07.08.663754v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0b/12265564/f4ab1f06f44e/nihpp-2025.07.08.663754v1-f0004.jpg

相似文献

[1]
Closing the loop: Teaching single-cell foundation models to learn from perturbations.

bioRxiv. 2025-7-12

[2]
Multiscale Probabilistic Modeling: A Bayesian Approach to Augment Mechanistic Models of Cell Signaling with Machine-Learning Predictions of Binding Affinity.

bioRxiv. 2025-7-9

[3]
Short-Term Memory Impairment

2025-1

[4]
Fabricating mice and dementia: opening up relations in multi-species research

2025-2-25

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[7]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[8]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[9]
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.

Autism Adulthood. 2024-12-2

[10]
Prediction, screening and characterization of novel bioactive tetrapeptide matrikines for skin rejuvenation.

Br J Dermatol. 2024-6-20

本文引用的文献

[1]
Germline genetic variation impacts clonal hematopoiesis landscape and progression to malignancy.

Nat Genet. 2025-7-15

[2]
Virtual Cell Challenge: Toward a Turing test for the virtual cell.

Cell. 2025-6-26

[3]
Benchmarking foundation cell models for post-perturbation RNA-seq prediction.

BMC Genomics. 2025-4-23

[4]
Autonomous platform for solution processing of electronic polymers.

Nat Commun. 2025-2-17

[5]
Targeting the CD74 signaling axis suppresses inflammation and rescues defective hematopoiesis in -familial platelet disorder.

Sci Transl Med. 2025-1-8

[6]
How to build the virtual cell with artificial intelligence: Priorities and opportunities.

Cell. 2024-12-12

[7]
Central control of dynamic gene circuits governs T cell rest and activation.

Nature. 2025-1

[8]
Closed-loop transfer enables artificial intelligence to yield chemical knowledge.

Nature. 2024-9

[9]
Large-scale foundation model on single-cell transcriptomics.

Nat Methods. 2024-8

[10]
scGPT: toward building a foundation model for single-cell multi-omics using generative AI.

Nat Methods. 2024-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索