哥伦比亚一项整合基因组和非基因组数据的散发性乳腺癌综合风险评估测试的临床验证。

Clinical validation of an integrated risk assessment test incorporating genomic and non-genomic data for sporadic breast cancer in Colombia.

作者信息

Velasco Parra Harvy Mauricio, Cardona Danny Styvens, Buitrago Cesar Augusto, Vanegas Melisa Naranjo, Hincapié Sebastián Gutiérrez, Jaramillo Carolina Jaramillo, Cock-Rada Alicia Maria, Benavides Duque Carolina, Piedrahita Clara Patricia, Bustamante Catalina, González Niño Leonel Andrés, Kintle Jen, Kulm Scott, Bolli Alessandro, Dominico Paolo Di, Botta Giordano, Busby George B, Valencia-Arango Juan Pablo

机构信息

Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center- Ayudas Diagnósticas SURA, Medellín, Colombia.

Data Science Department, Bioscience Center - Ayudas Diagnósticas SURA, Medellín, Colombia.

出版信息

Front Genet. 2025 Jul 2;16:1556907. doi: 10.3389/fgene.2025.1556907. eCollection 2025.

Abstract

INTRODUCTION

Breast cancer risk arises from a complex interaction of genetic, environmental, and physiological factors. Integrating Polygenic Risk Scores (PRS) with clinical risk factors can enhance personalized risk prediction, especially in diverse populations like Colombia.

OBJECTIVE

To evaluate the predictive performance of ancestry-specific PRS combined with clinical and imaging risk factors for breast cancer in Colombian women.

METHODS

We developed and validated ancestry-specific PRS using diverse genetic datasets. A cohort of 1,997 Colombian women, including 510 breast cancer cases (25.5%) and 1,487 controls (74.5%), were recruited. Clinical data, such as breast density and family history, were analyzed for predictive ability using the area under the receiver operating characteristic curve (AUC). Participants were categorized into genetic ancestry groups: Admixed American, African, and European. PRS were applied to the cohort and adjusted for clinical factors to assess risk prediction.

RESULTS

Breast density and family history were the strongest individual predictors, with AUCs of 0.66 and 0.64, respectively. Most participants were of Admixed American ancestry (70% of cases, 73% of controls). The combined PRS showed an Odds Ratio per Standard Deviation of 1.56 (95% CI 1.40-1.75) and an AUC of 0.72 (95% CI 0.69-0.74) when adjusted for family history. Incorporating PRS with clinical and imaging data improved the AUC to 0.79 (95% CI 0.76-0.81), significantly enhancing predictive accuracy.

CONCLUSION

Combining ancestry-specific PRS with clinical risk factors provides a more accurate approach for breast cancer risk stratification in Colombian women. These findings support the development of precise, population-specific risk assessment models.

摘要

引言

乳腺癌风险源于遗传、环境和生理因素的复杂相互作用。将多基因风险评分(PRS)与临床风险因素相结合可以增强个性化风险预测,尤其是在哥伦比亚这样的多样化人群中。

目的

评估特定血统的PRS与临床和影像风险因素相结合对哥伦比亚女性乳腺癌的预测性能。

方法

我们使用不同的遗传数据集开发并验证了特定血统的PRS。招募了1997名哥伦比亚女性队列,其中包括510例乳腺癌病例(25.5%)和1487名对照(74.5%)。使用受试者工作特征曲线下面积(AUC)分析诸如乳腺密度和家族史等临床数据的预测能力。参与者被分为遗传血统组:混血美洲人、非洲人和欧洲人。将PRS应用于该队列并针对临床因素进行调整以评估风险预测。

结果

乳腺密度和家族史是最强的个体预测因素,AUC分别为0.66和0.64。大多数参与者为混血美洲人血统(病例的70%,对照的73%)。在针对家族史进行调整后,组合的PRS显示每标准差的优势比为1.56(95%置信区间1.40 - 1.75),AUC为0.72(95%置信区间0.69 - 0.74)。将PRS与临床和影像数据相结合可将AUC提高至0.79(95%置信区间0.76 - 0.81),显著提高了预测准确性。

结论

将特定血统的PRS与临床风险因素相结合为哥伦比亚女性乳腺癌风险分层提供了一种更准确的方法。这些发现支持开发精确的、针对特定人群的风险评估模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ae4/12263362/b7329cfaf5f0/fgene-16-1556907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索