Suppr超能文献

利用建成环境监测预测大学校园内的新冠肺炎病例

Predicting COVID-19 Cases Across a Large University Campus Using Built Environment Surveillance.

作者信息

Hinz Aaron, Moggridge Jason A, Ke Hanna, Hicks Alexandra Ma, Doukhanine Evgueni, Fralick Michael, Hug Laura A, MacFadden Derek R, Mejbel Hebah S, Nott Caroline, Raudanskis Ashley, Thampi Nisha, Wong Alex, Kassen Rees

机构信息

Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.

Department of Biology, McGill University, Montreal, Quebec, Canada.

出版信息

J Assoc Med Microbiol Infect Dis Can. 2024 Dec 19;9(4):284-293. doi: 10.3138/jammi-2024-0002. eCollection 2024 Dec.

Abstract

BACKGROUND

Environmental surveillance of SARS-CoV-2 via wastewater has become an invaluable tool for population-level surveillance. Built environment sampling may provide complementary spatially refined detection for viral surveillance in congregate settings such as universities.

METHODS

We conducted a prospective environmental surveillance study at the University of Ottawa between September 2021 and April 2022. Floor surface samples were collected twice weekly from six university buildings and analyzed for the presence of SARS-CoV-2 using quantitative PCR. A Poisson regression was used to model the campus-wide COVID-19 cases predicted from the fraction of floor swabs positive for SARS-CoV-2 RNA, building CO levels, Wi-Fi usage, and SARS-CoV-2 RNA levels in city wastewater. Building-level cases were modelled using viral copies detected in floor samples as a predictor.

RESULTS

Over the 32-week study period, we collected 554 floor swabs at six university buildings. Overall, 13% of swabs were PCR positive for SARS-CoV-2, with positivity ranging between 4.8% and 32.7% among buildings. Both floor swab positivity (Spearman = 0.74, 95% CI 0.53 to 0.87) and city wastewater signal (Spearman = 0.50, 95% CI 0.18 to 0.73) positively correlated with on-campus COVID-19 cases. In addition, built environment detection was a predictor of cases linked to individual university buildings.

CONCLUSIONS

Detection of SARS-CoV-2 RNA on floors and viral RNA levels in city-wide wastewater were strongly associated with the incidence of COVID-19 cases on a university campus. These data suggest a potential role for institutional built environment sampling, used together with wastewater surveillance, for predicting COVID-19 cases at both campus-wide and building-level scales.

摘要

背景

通过废水对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)进行环境监测已成为人群水平监测的一项宝贵工具。建筑环境采样可为大学等聚集场所的病毒监测提供补充性的空间精细化检测。

方法

2021年9月至2022年4月期间,我们在渥太华大学开展了一项前瞻性环境监测研究。每周两次从六栋大学建筑采集地面样本,并用定量聚合酶链反应(PCR)分析样本中SARS-CoV-2的存在情况。采用泊松回归模型,根据SARS-CoV-2 RNA阳性的地面拭子比例、建筑一氧化碳水平、无线网络使用情况以及城市废水中的SARS-CoV-2 RNA水平,对全校园的冠状病毒病2019(COVID-19)病例进行预测。以在地面样本中检测到的病毒拷贝数作为预测指标,对建筑层面的病例进行建模。

结果

在为期32周的研究期间,我们在六栋大学建筑采集了554份地面拭子样本。总体而言,13%的拭子样本SARS-CoV-2 PCR检测呈阳性,各建筑的阳性率在4.8%至32.7%之间。地面拭子阳性率(斯皮尔曼相关系数=0.74,95%置信区间0.53至0.87)和城市废水信号(斯皮尔曼相关系数=0.50,95%置信区间0.18至0.73)均与校园内COVID-19病例呈正相关。此外,建筑环境检测是与个别大学建筑相关病例的预测指标。

结论

地面上SARS-CoV-2 RNA的检测以及城市废水中的病毒RNA水平与大学校园COVID-19病例的发生率密切相关。这些数据表明,机构建筑环境采样与废水监测相结合,在预测全校园和建筑层面的COVID-19病例方面可能发挥作用。

相似文献

1
Predicting COVID-19 Cases Across a Large University Campus Using Built Environment Surveillance.利用建成环境监测预测大学校园内的新冠肺炎病例
J Assoc Med Microbiol Infect Dis Can. 2024 Dec 19;9(4):284-293. doi: 10.3138/jammi-2024-0002. eCollection 2024 Dec.
4
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
9
Measures implemented in the school setting to contain the COVID-19 pandemic.学校为控制 COVID-19 疫情而采取的措施。
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验