Pruett Nathanael, Wilferd Sierra, Singh Anand, Choi Agnes Y, Dixit Shivani, Singh Vivek, Nguyen Charlize, Lin Olivia, Schrump David S, Plaisier Christopher L, Hoang Chuong D
Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
Mol Ther Nucleic Acids. 2025 Jun 17;36(3):102610. doi: 10.1016/j.omtn.2025.102610. eCollection 2025 Sep 9.
Diffuse pleural mesothelioma (DPM) is an incurable surface neoplasm governed by tumor suppressor losses with limited therapeutic options. Despite the advantages of leveraging the tumor suppressive activity of microRNA (miRNA/miR), clinical translation remains limited due to incomplete understanding of their context-specific gene targets. Here, we employed a biotinylated-miRNA pull-down approach to systematically identify direct targets of miR-497-5p, an miRNA markedly downregulated in DPM. Surprisingly, multiple identified targets were not predicted by algorithms. Using patient samples, cell lines, murine xenograft models, and our localized nanoparticle miRNA delivery platform, we validated miR-497-5p anti-tumor mechanisms, which consisted of pro-apoptotic and anti-cell-cycle effects. Of multiple additional gene associations to DPM biology, we identified a synthetic lethal-type interaction whereby miR-497-5p co-inhibits PKMYT1 and WEE1 cell-cycle kinases (G2/M regulators). They were significantly overexpressed (poorly prognostic) in DPM, suggesting an efficacious treatment regimen to be explored. We demonstrate the utility of experimentally deriving the miR-497-5p targetome, explaining its pathophysiological role in DPM and why it is a rational therapeutic for further development.
弥漫性胸膜间皮瘤(DPM)是一种无法治愈的浅表肿瘤,由肿瘤抑制因子缺失所调控,治疗选择有限。尽管利用微小RNA(miRNA/miR)的肿瘤抑制活性具有诸多优势,但由于对其特定背景下的基因靶点了解不全面,临床转化仍然有限。在此,我们采用生物素化miRNA下拉法系统地鉴定miR-497-5p的直接靶点,miR-497-5p是一种在DPM中显著下调的miRNA。令人惊讶的是,多个已鉴定的靶点未被算法预测到。利用患者样本、细胞系、小鼠异种移植模型以及我们的局部纳米颗粒miRNA递送平台,我们验证了miR-497-5p的抗肿瘤机制,该机制包括促凋亡和抗细胞周期作用。在与DPM生物学相关的多个其他基因关联中,我们发现了一种合成致死型相互作用,即miR-497-5p共同抑制PKMYT1和WEE1细胞周期激酶(G2/M调节因子)。它们在DPM中显著过表达(预后不良),提示有待探索一种有效的治疗方案。我们证明了通过实验推导miR-497-5p靶标组的实用性,解释了其在DPM中的病理生理作用以及为何它是进一步开发的合理治疗靶点。