Suppr超能文献

学习可信模型。

Learning Credible Models.

作者信息

Wang Jiaxuan, Oh Jeeheh, Wang Haozhu, Wiens Jenna

机构信息

University of Michigan.

出版信息

KDD. 2018 Aug;2018:2417-2426. doi: 10.1145/3219819.3220070. Epub 2018 Jul 19.

Abstract

In many settings, it is important that a model be capable of providing reasons for its predictions (., the model must be interpretable). However, the model's reasoning may not conform with well-established knowledge. In such cases, while interpretable, the model lacks . In this work, we formally define credibility in the linear setting and focus on techniques for learning models that are both accurate and credible. In particular, we propose a regularization penalty, expert yielded estimates (EYE), that incorporates expert knowledge about well-known relationships among covariates and the outcome of interest. We give both theoretical and empirical results comparing our proposed method to several other regularization techniques. Across a range of settings, experiments on both synthetic and real data show that models learned using the EYE penalty are significantly more credible than those learned using other penalties. Applied to two large-scale patient risk stratification task, our proposed technique results in a model whose top features overlap significantly with known clinical risk factors, while still achieving good predictive performance.

摘要

在许多情况下,一个模型能够为其预测提供理由(即,模型必须是可解释的)是很重要的。然而,模型的推理可能不符合已确立的知识。在这种情况下,虽然模型是可解释的,但它缺乏……在这项工作中,我们在线性设置中正式定义了可信度,并专注于学习既准确又可信的模型的技术。具体来说,我们提出了一种正则化惩罚,即专家给出的估计(EYE),它纳入了关于协变量与感兴趣的结果之间的已知关系的专家知识。我们给出了理论和实证结果,将我们提出的方法与其他几种正则化技术进行了比较。在一系列情况下,对合成数据和真实数据的实验表明,使用EYE惩罚学习到的模型比使用其他惩罚学习到的模型明显更可信。应用于两个大规模患者风险分层任务时,我们提出的技术产生了一个模型,其顶级特征与已知临床风险因素有显著重叠,同时仍实现了良好的预测性能。

相似文献

1
Learning Credible Models.学习可信模型。
KDD. 2018 Aug;2018:2417-2426. doi: 10.1145/3219819.3220070. Epub 2018 Jul 19.

本文引用的文献

3
Learning Data-Driven Patient Risk Stratification Models for Clostridium difficile.学习基于数据的艰难梭菌患者风险分层模型。
Open Forum Infect Dis. 2014 Jul 15;1(2):ofu045. doi: 10.1093/ofid/ofu045. eCollection 2014 Sep.
6
Weighted lasso with data integration.具有数据整合功能的加权套索法
Stat Appl Genet Mol Biol. 2011 Aug 29;10(1):/j/sagmb.2011.10.issue-1/sagmb.2011.10.1.1703/sagmb.2011.10.1.1703.xml. doi: 10.2202/1544-6115.1703.
8
Machine learning techniques to examine large patient databases.用于检查大型患者数据库的机器学习技术。
Best Pract Res Clin Anaesthesiol. 2009 Mar;23(1):127-43. doi: 10.1016/j.bpa.2008.09.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验