Suppr超能文献

预测重症监护病房患者的院内死亡率:2012年生理网/心脏病学计算挑战赛

Predicting In-Hospital Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge 2012.

作者信息

Silva Ikaro, Moody George, Scott Daniel J, Celi Leo A, Mark Roger G

机构信息

Massachusetts Institute of Technology, Cambridge, USA.

Beth Israel Deaconess Medical Center, Boston, USA.

出版信息

Comput Cardiol (2010). 2012;39:245-248.

Abstract

Acuity scores, such as APACHE, SAPS, MPM, and SOFA, are widely used to account for population differences in studies aiming to compare how medications, care guidelines, surgery, and other interventions impact mortality in Intensive Care Unit (ICU) patients. By contrast, the focus of the PhysioNet/CinC Challenge 2012 is to develop methods for patient-specific prediction of in-hospital mortality. The data used for the challenge consisted of 5 general descriptors and 36 time series (measurements of vital signs and laboratory results) from the first 48 hours of the first available ICU stay of 12,000 adult patients from the MIMIC II database. The challenge was organized as two events: event 1 measured performance of a binary classifier, and event 2 measured performance of a risk estimator. The score of event 1 was the lower of sensitivity and positive predictive value. The score for event 2 was a range-normalized Hosmer-Lemeshow statistic. A baseline algorithm (using SAPS-1) obtained event 1 and 2 scores of 0.3125 and 68.58 respectively. Most participants submitted entries that outperformed the baseline algorithm. The top final scores for events 1 and 2 were 0.5353 and 17.88 respectively.

摘要

急性生理与慢性健康状况评分系统(APACHE)、简化急性生理学评分(SAPS)、多器官功能不全评分(MPM)和序贯器官衰竭评估(SOFA)等急性生理学评分,在旨在比较药物、护理指南、手术及其他干预措施对重症监护病房(ICU)患者死亡率影响的研究中,被广泛用于解释人群差异。相比之下,2012年生理网/计算机在心脏病学中的应用挑战大赛的重点是开发针对个体患者的院内死亡率预测方法。用于该挑战的数据包括来自MIMIC II数据库的12000名成年患者首次入住ICU的前48小时内的5个一般描述符和36个时间序列(生命体征测量和实验室检查结果)。该挑战分为两个项目:项目1评估二分类器的性能,项目2评估风险估计器的性能。项目1的分数是敏感性和阳性预测值中的较低者。项目2的分数是经范围标准化的Hosmer-Lemeshow统计量。一种基线算法(使用SAPS-1)在项目1和项目2中分别获得了0.3125和68.58的分数。大多数参与者提交的参赛作品表现优于基线算法。项目1和项目2的最高最终分数分别为0.5353和17.88。

相似文献

引用本文的文献

1
Learning Credible Models.学习可信模型。
KDD. 2018 Aug;2018:2417-2426. doi: 10.1145/3219819.3220070. Epub 2018 Jul 19.

本文引用的文献

3
Comorbidity measures for use with administrative data.用于行政数据的共病测量方法。
Med Care. 1998 Jan;36(1):8-27. doi: 10.1097/00005650-199801000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验