Suppr超能文献

人工智能在侵入性外科手术数字视频分析中的应用:范围综述。

Use of artificial intelligence in the analysis of digital videos of invasive surgical procedures: scoping review.

作者信息

King Anni, Fowler George E, Macefield Rhiannon C, Walker Hamish, Thomas Charlie, Markar Sheraz, Higgins Ethan, Blazeby Jane M, Blencowe Natalie S

机构信息

National Institute for Health Research Bristol Biomedical Research Centre (Surgical and Orthopeadic Innovation Theme), University of Bristol & Centre for Surgical Research, Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, UK.

Nuffield Department of Surgical Sciences, Oxford University Hospitals, Oxford, UK.

出版信息

BJS Open. 2025 Jul 1;9(4). doi: 10.1093/bjsopen/zraf073.

Abstract

INTRODUCTION

Surgical videos are a valuable data source, offering detailed insights into surgical practice. However, video analysis requires specialist clinical knowledge and takes considerable time. Artificial intelligence (AI) has the potential to improve and streamline the interpretation of intraoperative video data. This systematic scoping review aimed to summarize the use of AI in the analysis of videos of surgical procedures and identify evidence gaps.

METHODS

Systematic searches of Ovid MEDLINE and Embase were performed using search terms 'artificial intelligence', 'video', and 'surgery'. Data extraction included reporting of general study characteristics; the overall objective of AI; descriptions of data sets, AI models, and training; methods of data annotation; and measures of accuracy. Data were summarized descriptively.

RESULTS

In all, 122 studies were included. More than half focused on gastrointestinal procedures (75 studies, 61.5%), predominantly cholecystectomy (47, 38.5%). The most common objectives were surgical phase recognition (40 studies, 32.8%), surgical instrument recognition (28, 23.0%), and enhanced intraoperative visualization (23, 18.9%). Of the studies, 79.5% (97) used a single data set and most (92, 75.4%) used supervised machine learning techniques. There was considerable variation across the studies in terms of the number of videos, centres, and contributing surgeons. Forty-seven studies (38.5%) did not report the number of annotators, and details about their experience were frequently omitted (102, 83.6%). Most studies used multiple outcome measures (67, 54.9%), most commonly overall or best accuracy of the AI model (67, 54.9%).

CONCLUSION

This review found that many studies omitted essential methodological details of AI training, testing, data annotation, and validation processes, creating difficulties when interpreting and replicating these studies. Another key finding was the lack of large data sets from multiple centres and surgeons. Future research should focus on curating large, varied, open-access data sets from multiple centres, patients, and surgeons to facilitate accurate evaluation using real-world data.

摘要

引言

手术视频是一种宝贵的数据源,能提供对外科手术实践的详细洞察。然而,视频分析需要专业临床知识且耗时颇长。人工智能(AI)有潜力改进并简化术中视频数据的解读。本系统综述旨在总结AI在外科手术视频分析中的应用,并识别证据空白。

方法

使用检索词“人工智能”“视频”和“外科手术”对Ovid MEDLINE和Embase进行系统检索。数据提取包括报告一般研究特征;AI的总体目标;数据集、AI模型和训练的描述;数据标注方法;以及准确性测量。数据采用描述性总结。

结果

共纳入122项研究。超过半数聚焦于胃肠道手术(75项研究,61.5%),主要是胆囊切除术(47项,38.5%)。最常见的目标是手术阶段识别(40项研究,32.8%)、手术器械识别(28项,23.0%)和增强术中可视化(23项,18.9%)。在这些研究中,79.5%(97项)使用单一数据集,且大多数(92项,75.4%)使用监督机器学习技术。各研究在视频数量、中心数量和参与手术的外科医生数量方面存在相当大的差异。47项研究(38.5%)未报告注释者数量,且关于他们经验的细节经常被省略(102项,83.6%)。大多数研究使用多种结果测量(67项,54.9%),最常见的是AI模型的总体或最佳准确性(67项,54.9%)。

结论

本综述发现,许多研究遗漏了AI训练、测试、数据标注和验证过程的基本方法细节,在解释和复制这些研究时造成困难。另一个关键发现是缺乏来自多个中心和外科医生的大型数据集。未来研究应专注于整理来自多个中心、患者和外科医生的大型、多样、开放获取的数据集,以便使用真实世界数据进行准确评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/381e/12268333/a7273c2f107d/zraf073f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验