Suppr超能文献

从组学到人工智能——绘制2型糖尿病的致病途径

From omics to AI-mapping the pathogenic pathways in type 2 diabetes.

作者信息

O'Sullivan Siobhán, Qi Lu, Zalloua Pierre

机构信息

Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE.

Tulane University Obesity Research Center, School of Medicine, Tulane University, New Orleans, LA, USA.

出版信息

FEBS Lett. 2025 Jul 17. doi: 10.1002/1873-3468.70115.

Abstract

Understanding the biochemical pathways and interorgan cross talk underlying type 2 diabetes (T2D) is essential for elucidating its pathophysiology. These pathways provide a mechanistic framework linking molecular dysfunction to clinical phenotypes, enabling patient stratification based on dominant metabolic disturbances. Advances in multi-omics, including genomics, transcriptomics, proteomics, microbiomics, and metabolomics, offer a systems-level view connecting genetic variants and regulatory elements to disease traits. Single-cell technologies further refine this perspective by identifying cell-type-specific drivers of β-cell failure, hepatic glucose dysregulation, and adipose inflammation. AI-driven analytics and machine learning integrate these high-dimensional datasets, uncovering molecular signatures and regulatory networks involved in insulin signaling, lipid metabolism, mitochondrial function, and immune-metabolic cross talk. This review synthesizes current evidence on T2D's molecular architecture, emphasizing key pathways such as PI3K-Akt, AMPK, mTOR, JNK, and sirtuins. It also explores the role of gut microbiota in modulating host metabolism and inflammation. Adopting a pathway-centric systems biology approach moves beyond statistical associations toward mechanistic insight. Integrating multi-omics with AI-based modeling represents a transformative strategy for stratifying patients and guiding precision therapies in diabetes care. Impact statement This review translates complex biochemical pathways into therapeutic direction for type 2 diabetes, addressing a critical gap between molecular research and clinical care. By integrating multi-omics, AI, and systems biology, it empowers the scientific community to develop targeted interventions that reduce the global burden of this escalating metabolic disease.

摘要

了解2型糖尿病(T2D)背后的生化途径和器官间相互作用对于阐明其病理生理学至关重要。这些途径提供了一个将分子功能障碍与临床表型联系起来的机制框架,使得能够根据主要的代谢紊乱对患者进行分层。多组学的进展,包括基因组学、转录组学、蛋白质组学、微生物组学和代谢组学,提供了一个系统层面的视角,将基因变异和调控元件与疾病特征联系起来。单细胞技术通过识别β细胞功能衰竭、肝脏葡萄糖调节异常和脂肪炎症的细胞类型特异性驱动因素,进一步细化了这一观点。人工智能驱动的分析和机器学习整合了这些高维数据集,揭示了参与胰岛素信号传导、脂质代谢、线粒体功能和免疫代谢相互作用的分子特征和调控网络。本综述综合了关于T2D分子结构的当前证据,强调了PI3K-Akt、AMPK、mTOR、JNK和sirtuins等关键途径。它还探讨了肠道微生物群在调节宿主代谢和炎症中的作用。采用以途径为中心的系统生物学方法超越了统计关联,转向了机制性洞察。将多组学与基于人工智能的建模相结合,代表了一种用于糖尿病护理中患者分层和指导精准治疗的变革性策略。影响声明 本综述将复杂的生化途径转化为2型糖尿病的治疗方向,填补了分子研究与临床护理之间的关键空白。通过整合多组学、人工智能和系统生物学,它使科学界能够开发有针对性的干预措施,以减轻这种不断升级的代谢疾病的全球负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验