Peter Jipin, Choudhary Tanu, Biswas Raju K
Department of Physics, Faculty of Natural Sciences, M S Ramaiah University of Applied Sciences, Bengaluru 560058, India.
Department of Physics, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh-791109, India.
Phys Chem Chem Phys. 2025 Jul 30;27(30):15929-15945. doi: 10.1039/d5cp02035b.
Heterostructures have recently emerged as suitable candidates for energy applications owing to their intriguing high electronic properties and low thermal conductivity. Traditionally, experimentally observable chiral phonons, protected by the crystal hexagonal symmetry in two-dimensional honeycomb lattices and originating primarily at the Brillouin zone corner, play a critical role in achieving ultra-low lattice thermal conductivity (). It is mainly attributed to the three-fold rotational symmetry-driven circularly polarized chiral phonons that restrict certain scattering processes and reduce thermal resistance. Herein, we identify an innovative mechanism that not only preserves phonon chirality but also minimises lattice thermal conductivity by satisfying certain phonon selection rules and enhancing anharmonic scattering, particularly in the long wavelength limit. This study encompasses first-principles calculations and solutions to the Boltzmann transport equation, along with various thermal transport theories to investigate the structural, thermal and electronic transport properties of group-IV-based dichalcogenides in hexagonal phase MSe (M = Mo and W) and their heterostructures (HS), MoSe/WSe and MoSeTe/WSeTe. Interestingly, phenomena such as membrane effect and hybridization of acoustics and low-lying optical phonons combined with phonon branching and phonon bunching are identified to execute an imperative role in suppressing thermal transport, resulting in a low value of 2.83 W m K in MoSe/WSe and an ultra-low of 0.5 W m K in MoSeTe/WSeTe HS. The disparity in computing carrier mobility using deformation potential theory (DPT) is addressed herein, and to rectify the inconsistency, we additionally incorporate the Fröhlich interaction, which accounts for longitudinal optical phonons in estimating the carrier mobility accurately. Overall, the present work exploits the intrinsic properties of chiral phonons through breaking the crystal inversion symmetry, providing important insights into the rational design of low-dimensional thermoelectric materials.
由于其引人入胜的高电子特性和低导热性,异质结构最近已成为能源应用的合适候选材料。传统上,在二维蜂窝晶格中由晶体六边形对称性保护且主要起源于布里渊区角点的实验可观测手性声子,在实现超低晶格热导率方面起着关键作用。这主要归因于三重旋转对称性驱动的圆偏振手性声子,它限制了某些散射过程并降低了热阻。在此,我们确定了一种创新机制,该机制不仅保留了声子手性,还通过满足某些声子选择规则并增强非谐散射来最小化晶格热导率,特别是在长波长极限下。本研究包括第一性原理计算和玻尔兹曼输运方程的解,以及各种热输运理论,以研究六方相MSe(M = Mo和W)及其异质结构(HS)MoSe/WSe和MoSeTe/WSeTe中基于IV族的二硫属化物的结构、热和电子输运性质。有趣的是,诸如膜效应以及声学和低频光学声子的杂化与声子分支和声子聚束相结合的现象被确定在抑制热输运中起着至关重要的作用,导致MoSe/WSe中的低热导率值为2.83 W m⁻¹ K⁻¹,而MoSeTe/WSeTe HS中的超低热导率为0.5 W m⁻¹ K⁻¹。本文解决了使用形变势理论(DPT)计算载流子迁移率时的差异,为了纠正这种不一致,我们还纳入了弗罗利希相互作用,该相互作用在准确估计载流子迁移率时考虑了纵向光学声子。总体而言,本工作通过打破晶体反演对称性利用了手性声子的固有特性,为低维热电材料的合理设计提供了重要见解。