Suppr超能文献

基于支持向量机的增强型网络空间漏洞预测模型:分析用户群体动态和资本流入的作用。

Enhanced SVM-based model for predicting cyberspace vulnerabilities: Analyzing the role of user group dynamics and capital influx.

作者信息

Long Yicheng

机构信息

School of Humanities, Huazhong University of Science and Technology, Wuhan, Hubei, China.

School of Culture and Communication, Faculty of Arts, The University of Melbourne, Victoria Australia.

出版信息

PLoS One. 2025 Jul 17;20(7):e0327476. doi: 10.1371/journal.pone.0327476. eCollection 2025.

Abstract

Amid substantial capital influx and the rapid evolution of online user groups, the increasing complexity of user behavior poses significant challenges to cybersecurity, particularly in the domain of vulnerability prediction. This study aims to enhance the accuracy and practical applicability of cyberspace vulnerability prediction. By incorporating the dynamics of user behavioral changes and the logic of platform scaling driven by investment, two representative cybersecurity datasets are selected for analysis: the Canadian Institute for Cybersecurity Intrusion Detection System 2017 and the Network-Based Intrusion Detection Evaluation Dataset 2015. A standardized data preprocessing pipeline is constructed, including redundancy elimination, feature selection, and sample balancing, to ensure data representativeness and compatibility. To address the limited adaptability of traditional support vector machine (SVM) models in identifying nonlinear attacks, this study introduces a distribution-driven, dynamically adaptive kernel optimization approach. This method adjusts kernel parameters or switches kernel functions in real time according to the statistical characteristics of input data, thereby improving the model's generalization capability and responsiveness in complex attack scenarios. Performance evaluations are conducted on both datasets using cross-validation. The results show that, compared to traditional models, the improved SVM achieves an 11.2% increase in prediction accuracy. Furthermore, the model demonstrates a 22.2% improvement in computational efficiency, measured as the ratio of prediction count to processing time. It also exhibits lower false positive rates and greater stability in detecting common cyberattacks such as distributed denial of service, phishing, and malware. In addition, this study analyzes user behavioral variations under different levels of attack pressure based on network access activity. Findings indicate that during periods of high platform load, attack frequency is positively correlated with users' defensive behavior, confirming a potential causal sequence of "capital influx-user expansion-increased attack exposure." This study offers a practical modeling framework and empirical foundation for improving predictive performance and enhancing users' sense of cybersecurity.

摘要

在大量资本涌入和在线用户群体快速演变的背景下,用户行为日益复杂,给网络安全带来了重大挑战,尤其是在漏洞预测领域。本研究旨在提高网络空间漏洞预测的准确性和实际适用性。通过纳入用户行为变化的动态因素以及投资驱动的平台扩展逻辑,选择了两个具有代表性的网络安全数据集进行分析:2017年加拿大网络安全研究所入侵检测系统和2015年基于网络的入侵检测评估数据集。构建了标准化的数据预处理流程,包括冗余消除、特征选择和样本平衡,以确保数据的代表性和兼容性。为了解决传统支持向量机(SVM)模型在识别非线性攻击方面适应性有限的问题,本研究引入了一种分布驱动的动态自适应核优化方法。该方法根据输入数据的统计特征实时调整核参数或切换核函数,从而提高模型在复杂攻击场景下的泛化能力和响应能力。使用交叉验证对两个数据集进行性能评估。结果表明,与传统模型相比,改进后的SVM预测准确率提高了11.2%。此外,该模型在计算效率方面提高了22.2%,计算效率以预测次数与处理时间的比率衡量。在检测分布式拒绝服务、网络钓鱼和恶意软件等常见网络攻击时,它还表现出更低的误报率和更高的稳定性。此外,本研究基于网络访问活动分析了不同攻击压力水平下的用户行为变化。研究结果表明,在平台负载较高的时期,攻击频率与用户的防御行为呈正相关,证实了“资本涌入-用户扩张-攻击暴露增加”的潜在因果序列。本研究为提高预测性能和增强用户网络安全意识提供了一个实用的建模框架和实证基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c6/12270157/cd3f5275f704/pone.0327476.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验