Suppr超能文献

模块化、聚焦式数据科学教育提升生物医学学习者的能力:研究训练中的数据与分析(DART)项目研究

Modular, focused data science education improves biomedical learners' abilities: A study of the Data and Analytics for Research Training (DART) program.

作者信息

Hartman Rose, Payton Karen Joy, Franzen Rose, Lee Meredith, Drellich Elizabeth, Shokoufandeh Ali, Pennington Jeffrey

机构信息

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America.

College of Computing & Informatics, Drexel University, Philadelphia, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2025 Jul 17;21(7):e1013249. doi: 10.1371/journal.pcbi.1013249. eCollection 2025 Jul.

Abstract

The increasing availability of big data and adoption of sophisticated computational techniques in biomedical research has exciting implications for our scientific understanding of human health. However, researchers report struggling to find data science education that meets their needs, despite the fact that many training programs and online resources exist. There is a lack of evidence on the strengths and weaknesses of various training options, making selecting an educational path daunting. We created a new data science training program focused on rigorous, reproducible methods for biomedical research, making use of tightly scoped modular content that can be flexibly arranged to provide a curriculum tailored to a researcher's specific needs and skill level. Moreover, we ran a study testing the program's effectiveness, providing not only another option for data science training but also a model for collecting and sharing relevant data on data science education programs. We ran two waves of research participants, adjusting our materials in between to improve both the training program and our research design. For both waves, we pre-registered hypotheses that learners' self-reported data science ability and level of agreement with important tenets of open science would increase over the course of the program. Indeed, learners showed significant improvement in data science ability (Wave 1: t(47) = 10.18, p < .001, Wave 2: t(238) = 17.12, p < .001) and greater agreement with open science values (Wave 1: t(47) = 3.56, p < .001, Wave 2: t(238) = 7.95, p < .001). Follow up analyses underscore the robustness of improvement in data science ability. The improvement in open science values was more moderate and was significant only in some of our pre-registered hypothesis tests, likely due to a ceiling effect as most learners reported high agreement with open science values at pretest.

摘要

大数据在生物医学研究中的可用性不断提高,以及复杂计算技术的采用,为我们对人类健康的科学理解带来了令人兴奋的影响。然而,研究人员报告称,尽管存在许多培训项目和在线资源,但他们仍难以找到满足其需求的数据科学教育。目前缺乏关于各种培训选项优缺点的证据,这使得选择一条教育路径令人望而生畏。我们创建了一个新的数据科学培训项目,专注于生物医学研究中严谨、可重复的方法,利用范围严格的模块化内容,这些内容可以灵活安排,以提供适合研究人员特定需求和技能水平的课程。此外,我们进行了一项研究来测试该项目的有效性,这不仅为数据科学培训提供了另一种选择,还为收集和分享数据科学教育项目的相关数据提供了一个模型。我们进行了两波研究参与者,在两波之间调整我们的材料,以改进培训项目和研究设计。对于这两波参与者,我们预先设定了假设,即学习者自我报告的数据科学能力以及与开放科学重要原则的认同程度将在项目过程中提高。事实上,学习者在数据科学能力方面有显著提高(第一波:t(47) = 10.18,p <.001;第二波:t(238) = 17.12,p <.001),并且对开放科学价值观的认同度更高(第一波:t(47) = 3.56,p <.001;第二波:t(238) = 7.95,p <.001)。后续分析强调了数据科学能力提高的稳健性。开放科学价值观的提高较为温和,仅在我们预先设定的一些假设检验中显著,这可能是由于天花板效应,因为大多数学习者在预测试中报告对开放科学价值观的认同度很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c9c/12286386/104d87752776/pcbi.1013249.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验