Suppr超能文献

存在沃尔巴克氏体时西尼罗河病毒流行模型的分数阶建模与求解

Fractional order modeling and solution of West Nile virus epidemic model in presence of Wolbachia.

作者信息

Ahmed Iftikhar, Amjid Mohammad, Azhar Ehtsham, Jamal Muhammad, Faiz Zeshan

机构信息

Department of Mathematics, COMSATS University Islamabad, Pakistan.

Department of Mathematics, PMAS Arid Agriculture University, Rawalpindi, Pakistan.

出版信息

Comput Biol Med. 2025 Sep;196(Pt B):110652. doi: 10.1016/j.compbiomed.2025.110652. Epub 2025 Jul 16.

Abstract

This study investigates a deterministic mathematical model to analyze the dynamics of West Nile Virus (WNV) in the presence of Wolbachia-infected mosquitoes as a biocontrol strategy to reduce West Nile virus transmission. The model comprises twelve compartments, including four compartments for bird populations, four compartments for Wolbachia-free and four compartments for Wolbachia-infected mosquito populations. An artificial neural network (ANN) trained with the Levenberg-Marquardt (LM) algorithm is employed to solve the resulting complex nonlinear system. Using Caputo fractional derivatives, reference datasets for the model are generated numerically using the Adams-Bashforth-Moulton method. The ANN-LM framework partitions the data into training (70%), validation (15%), and testing (15%) subsets. Three scenarios of vertical transmission probabilities (η) of Wolbachia are evaluated: persistence of Wolbachia-free mosquitoes only (η = 0.6), coexistence of both type of mosquitoes (η = 0.8), and persistence of Wolbachia-infected mosquitoes only (η = 1). The model is further tested under fractional orders (α = 0.7, 0.8, 0.9). Simulations reveal that the Wolbachia dominant scenario (η = 1) combined with α = 0.9 reduces WNV prevalence in bird hosts by over 65%, confirming the bacterium's efficacy in blocking transmission. The ANN-LM method achieves high accuracy, with correlation coefficients exceeding 0.99, mean square errors as low as 1.6×10, and absolute errors consistently below 10. The plots for regression analysis and error histograms further validate the model's robustness. These findings highlight the potential of Wolbachia-based biocontrol strategies and neural network optimization in enhancing the precision and computational efficiency of fractional-order epidemiological models.

摘要

本研究调查了一个确定性数学模型,以分析在存在感染沃尔巴克氏体的蚊子作为减少西尼罗河病毒传播的生物防治策略的情况下西尼罗河病毒(WNV)的动态。该模型包括十二个区室,其中四个区室用于鸟类种群,四个区室用于未感染沃尔巴克氏体的蚊子种群,四个区室用于感染沃尔巴克氏体的蚊子种群。使用Levenberg-Marquardt(LM)算法训练的人工神经网络(ANN)来求解由此产生的复杂非线性系统。使用Caputo分数阶导数,使用Adams-Bashforth-Moulton方法数值生成模型的参考数据集。ANN-LM框架将数据划分为训练(70%)、验证(15%)和测试(15%)子集。评估了沃尔巴克氏体垂直传播概率(η)的三种情况:仅未感染沃尔巴克氏体的蚊子持续存在(η = 0.6)、两种类型蚊子共存(η = 0.8)以及仅感染沃尔巴克氏体的蚊子持续存在(η = 1)。该模型在分数阶(α = 0.7、0.8、0.9)下进一步测试。模拟结果表明,沃尔巴克氏体占主导的情况(η = 1)与α = 0.9相结合可使鸟类宿主中西尼罗河病毒的流行率降低超过65%,证实了该细菌在阻断传播方面的功效。ANN-LM方法具有很高的准确性,相关系数超过0.99,均方误差低至1.6×10,绝对误差始终低于10。回归分析图和误差直方图进一步验证了模型的稳健性。这些发现突出了基于沃尔巴克氏体的生物防治策略和神经网络优化在提高分数阶流行病学模型的精度和计算效率方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验