Suppr超能文献

基于改进鲸鱼优化算法-长短期记忆网络的钢纤维混凝土内部结构识别

IWOA-LSTM based intrinsic structural identification of steel fiber concrete.

作者信息

Li Ping, Feng Jie, Duan Shiwei

机构信息

School of Management Science and Engineering, Anhui University of Technology, Maanshan, 243032, China.

School of Mechanical Engineering, Anhui University of Technology, Maanshan, 243032, China.

出版信息

Sci Rep. 2025 Jul 17;15(1):25990. doi: 10.1038/s41598-025-08867-6.

Abstract

Fracture damage in steel fiber concrete (SFRC) is a developmental process in which deformation and damage are coupled with each other. In order to accurately identify the high-temperature constitutive model taking into account the damage evolution, a high-temperature constitutive identification model using the Improved Whale Algorithm (IWOA) optimised Long Short-Term Memory (LSTM) neural network is presented. Firstly, the Laplace crossover operator strategy, the optimal neighbourhood perturbation strategy, the adaptive weighting strategy and the updating strategy of the variables helix position are introduced to solve the problems of the Whale Optimisation Algorithm (WOA) in relation to its slow convergence rate and its tendency to fall into the locally optimal solution. The supremacy of the IWOA has been demonstrated by comparing IWOA with WOA, Crown Porcupine Optimisation Algorithm (CPO), Butterfly Optimisation Algorithm (BOA) and Grey Wolf Optimisation Algorithm (GWO) in terms of optimisation search. Secondly, based on the experimental data, LSTM model, WOA-LSTM model and IWOA-LSTM model were established, where the MSE of IWOA-LSTM model was improved by 47.66% and 65.60% compared to WOA-LSTM model as well as LSTM model. Finally, the constitutive identification model of SFRC using the IWOA-LSTM model was applied to decouple the damage and plastic strain by the comparative analysis of the measured curves and the prediction curves without the damage, so that the damage and its evolution law of steel fiber concrete at different temperatures (T = 200 °C, T = 400 °C and T = 520 °C) were obtained. The degree of approximation between the IWOA-LSTM model's prediction and experimental data shows that the trained model has a high learning accuracy and good generalization capability, making it appropriate for use in structural engineering applications.

摘要

钢纤维混凝土(SFRC)中的断裂损伤是一个变形与损伤相互耦合的发展过程。为了准确识别考虑损伤演化的高温本构模型,提出了一种采用改进鲸鱼算法(IWOA)优化长短期记忆(LSTM)神经网络的高温本构识别模型。首先,引入拉普拉斯交叉算子策略、最优邻域扰动策略、自适应加权策略和变量螺旋位置更新策略,以解决鲸鱼优化算法(WOA)收敛速度慢和易陷入局部最优解的问题。通过将IWOA与WOA、皇冠豪猪优化算法(CPO)、蝴蝶优化算法(BOA)和灰狼优化算法(GWO)在优化搜索方面进行比较,证明了IWOA的优越性。其次,基于实验数据建立了LSTM模型、WOA-LSTM模型和IWOA-LSTM模型,其中IWOA-LSTM模型的均方误差(MSE)与WOA-LSTM模型和LSTM模型相比分别提高了47.66%和65.60%。最后,将采用IWOA-LSTM模型的SFRC本构识别模型应用于通过对实测曲线和无损预测曲线的对比分析来解耦损伤和塑性应变,从而得到不同温度(T = 200°C、T = 400°C和T = 520°C)下钢纤维混凝土的损伤及其演化规律。IWOA-LSTM模型预测与实验数据之间的近似程度表明,所训练的模型具有较高的学习精度和良好的泛化能力,适用于结构工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0ea/12271388/85ccea80ddac/41598_2025_8867_Fig1_HTML.jpg

相似文献

1
IWOA-LSTM based intrinsic structural identification of steel fiber concrete.
Sci Rep. 2025 Jul 17;15(1):25990. doi: 10.1038/s41598-025-08867-6.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
10
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.

本文引用的文献

2
3
Corroded Bolt Identification Using Mask Region-Based Deep Learning Trained on Synthesized Data.
Sensors (Basel). 2022 Apr 27;22(9):3340. doi: 10.3390/s22093340.
4
Inexpensive Anti-Icing Concrete Material for Application to Tunnel and Slope Engineering Infrastructures in Cold Regions.
ACS Appl Mater Interfaces. 2021 Nov 10;13(44):53030-53045. doi: 10.1021/acsami.1c14046. Epub 2021 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验