Suppr超能文献

提高绵羊甲烷排放和饲料效率的基因组预测准确性:使用神经网络GBLUP(NN-GBLUP)将瘤胃微生物主成分分析与宿主基因组变异相结合。

Improving genomic prediction accuracy for methane emission and feed efficiency in sheep: integrating rumen microbial PCA with host genomic variation using neural network GBLUP (NN-GBLUP).

作者信息

Alemu Setegn Worku, Bilton Timothy P, Johnson Patricia L, Perry Benjamin J, Henry Hannah, Dodds Ken G, McEwan John C, Rowe Suzanne J

机构信息

AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053, New Zealand.

出版信息

Genet Sel Evol. 2025 Jul 17;57(1):41. doi: 10.1186/s12711-025-00987-x.

Abstract

BACKGROUND

Methane emissions from ruminant livestock pose a significant challenge to mitigating climate change. Genomic selection offers a promising approach to reduce methane emissions, but prediction accuracy remains low due to the high cost of measuring methane emissions. Integrating rumen microbiome composition (RMC) data may improve genomic prediction accuracy, yet the high dimensionality of RMC data presents computational challenges. This study aimed to (1) evaluate the effectiveness of principal component analysis (PCA) for reducing RMC data dimensionality while retaining essential information, and (2) assess whether incorporating PCA-reduced RMC data as intermediate traits in a Neural Network Genomic Best Linear Unbiased Prediction (NN-GBLUP) model improves genomic prediction accuracy for methane emissions and feed efficiency traits in sheep.

RESULTS

For the first objective, Principal Components (PCs) explaining 100% of variation effectively captured RMC information, with microbiability estimates closely matching those from the full dataset. For the second objective, the NN-GBLUP model incorporating PCA-reduced RMC data improved prediction accuracy compared to standard GBLUP methods. Prediction accuracy for methane emissions increased from 0.09 to 0.30 in train-test validation and from 0.15 to 0.27 in five-fold cross-validation using PCA components explaining 25% of total RMC variation. For residual feed intake, accuracy improved from 0.25 to 0.37 in train-test validation and from 0.25 to 0.34 in cross-validation. Optimal PCA components varied by trait, with 25% and 50% components showing the best results. Prediction accuracy did not improve for carbon dioxide emissions, live weight, and mid-intake, indicating trait-dependent microbiome influence.

CONCLUSIONS

Principal Component Analysis reduced the dimensionality of rumen microbiome data while preserving essential biological information. The integration of these PCA-reduced data with host genomic information through an NN-GBLUP model substantially improved genomic prediction accuracy for methane emissions and feed efficiency in sheep. Principal components explaining 25% and 50% of the variation yielded the highest accuracy, whereas higher components (75% and 95%) reduced accuracy for methane traits. This approach shows promise for implementing genomic selection strategies to reduce methane emissions and improve feed efficiency in ruminant livestock in a computationally efficient manner, thereby contributing to climate change mitigation efforts in agriculture.

摘要

背景

反刍家畜的甲烷排放对缓解气候变化构成重大挑战。基因组选择为减少甲烷排放提供了一种有前景的方法,但由于测量甲烷排放成本高昂,预测准确性仍然较低。整合瘤胃微生物群组成(RMC)数据可能会提高基因组预测准确性,然而RMC数据的高维度带来了计算挑战。本研究旨在:(1)评估主成分分析(PCA)在降低RMC数据维度同时保留关键信息的有效性,以及(2)评估在神经网络基因组最佳线性无偏预测(NN-GBLUP)模型中纳入经PCA降维的RMC数据作为中间性状,是否能提高绵羊甲烷排放和饲料效率性状的基因组预测准确性。

结果

对于第一个目标,解释100%变异的主成分(PCs)有效地捕获了RMC信息,微生物性估计值与完整数据集的估计值紧密匹配。对于第二个目标,与标准GBLUP方法相比,纳入经PCA降维的RMC数据的NN-GBLUP模型提高了预测准确性。在使用解释总RMC变异25%的PCA成分进行的训练-测试验证中,甲烷排放的预测准确性从0.09提高到0.30,在五折交叉验证中从0.15提高到0.27。对于剩余采食量,在训练-测试验证中准确性从0.25提高到0.37,在交叉验证中从0.25提高到0.34。最佳PCA成分因性状而异,25%和50%的成分显示出最佳结果。二氧化碳排放、体重和采食量中期的预测准确性没有提高,表明微生物群的影响具有性状依赖性。

结论

主成分分析降低了瘤胃微生物群数据的维度,同时保留了关键生物学信息。通过NN-GBLUP模型将这些经PCA降维的数据与宿主基因组信息整合,显著提高了绵羊甲烷排放和饲料效率的基因组预测准确性。解释25%和50%变异的主成分产生了最高的准确性,而更高的成分(75%和95%)降低了甲烷性状的准确性。这种方法有望以计算高效的方式实施基因组选择策略,以减少反刍家畜的甲烷排放并提高饲料效率,从而为农业领域的气候变化缓解努力做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验