Suppr超能文献

遗传评估包括中间组学特征。

Genetic evaluation including intermediate omics features.

机构信息

Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark.

Departmento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, 50013 Saragoza, Spain.

出版信息

Genetics. 2021 Oct 2;219(2). doi: 10.1093/genetics/iyab130.

Abstract

In animal and plant breeding and genetics, there has been an increasing interest in intermediate omics traits, such as metabolomics and transcriptomics, which mediate the effect of genetics on the phenotype of interest. For inclusion of such intermediate traits into a genetic evaluation system, there is a need for a statistical model that integrates phenotypes, genotypes, pedigree, and omics traits, and a need for associated computational methods that provide estimated breeding values. In this paper, a joint model for phenotypes and omics data is presented, and a formula for the breeding values on individuals is derived. For complete omics data, three equivalent methods for best linear unbiased prediction of breeding values are presented. In all three cases, this requires solving two mixed model equation systems. Estimation of parameters using restricted maximum likelihood is also presented. For incomplete omics data, extensions of two of these methods are presented, where in both cases, the extension consists of extending an omics-related similarity matrix to incorporate individuals without omics data. The methods are illustrated using a simulated data set.

摘要

在动植物育种和遗传学中,人们对中间组学性状(如代谢组学和转录组学)越来越感兴趣,这些性状介导了遗传对感兴趣的表型的影响。为了将这些中间性状纳入遗传评估系统,需要一种能够整合表型、基因型、系谱和组学性状的统计模型,以及提供估计育种值的相关计算方法。本文提出了一种用于表型和组学数据的联合模型,并推导出了个体的育种值公式。对于完整的组学数据,提出了三种用于最佳线性无偏预测育种值的等效方法。在所有三种情况下,这都需要求解两个混合模型方程组。还提出了使用受限最大似然估计参数的方法。对于不完全的组学数据,提出了其中两种方法的扩展,在这两种情况下,扩展都包括扩展一个与组学相关的相似性矩阵,以纳入没有组学数据的个体。该方法使用模拟数据集进行了说明。

相似文献

3
Genomic Model with Correlation Between Additive and Dominance Effects.具有加性和显性效应相关性的基因组模型。
Genetics. 2018 Jul;209(3):711-723. doi: 10.1534/genetics.118.301015. Epub 2018 May 9.
5
Integrating omics databases for enhanced crop breeding.整合组学数据库以增强作物育种。
J Integr Bioinform. 2023 Jul 25;20(4). doi: 10.1515/jib-2023-0012. eCollection 2023 Dec 1.

引用本文的文献

本文引用的文献

3
Leveraging Multiple Layers of Data To Predict Complex Traits.利用多层数据预测复杂性状。
G3 (Bethesda). 2020 Dec 3;10(12):4599-4613. doi: 10.1534/g3.120.401847.
4
Invited review: Cattle lameness detection with accelerometers.特邀评论:使用加速度计检测牛只跛行。
J Dairy Sci. 2020 May;103(5):3895-3911. doi: 10.3168/jds.2019-17123. Epub 2020 Feb 26.
7
Probabilistic fine-mapping of transcriptome-wide association studies.全转录组关联研究的概率精细映射。
Nat Genet. 2019 Apr;51(4):675-682. doi: 10.1038/s41588-019-0367-1. Epub 2019 Mar 29.
8
A likelihood-based approach to transcriptome association analysis.基于可能性的转录组关联分析方法。
Stat Med. 2019 Apr 15;38(8):1357-1373. doi: 10.1002/sim.8040. Epub 2018 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验