Suppr超能文献

病理学实验室数字孪生宣言。

Digital twin manifesto for the pathology laboratory.

作者信息

Eccher Albino, Pagni Fabio, Dominici Massimo, Bonetti Luca Reggiani, Marletta Stefano, Munari Enrico, Cazzaniga Giorgio, Parwani Anil V, L'Imperio Vincenzo, Dei Tos Angelo Paolo

机构信息

Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy.

Pathology Unit, University Hospital of Modena, Modena, Italy.

出版信息

Diagn Pathol. 2025 Jul 17;20(1):84. doi: 10.1186/s13000-025-01679-2.

Abstract

This manuscript presents a manifesto developed by a multifaceted board of stakeholders aimed at guiding the implementation of Digital Twin (DT) technology in pathology laboratories. DTs, already transformative in other sectors, hold substantial promise for enhancing operational efficiency, diagnostic accuracy, and quality of care in pathology. We provide a comparative analysis of traditional versus DT-enhanced workflows across critical steps including accessioning, grossing, processing, embedding, cutting, staining, scanning, diagnosis, and archiving. The framework highlights measurable gains such as up to 90% reduction in labeling errors, 20-30% improvements in slide quality, and 30-50% reductions in diagnostic turnaround time. Alongside these benefits, we address key implementation challenges including upfront infrastructure costs, workforce adaptation, and data security concerns. A practical, phased deployment strategy is proposed-centered on LIS integration, IoT sensors, AI modules, and robust data governance. Estimated setup costs for a medium-sized laboratory range between USD 100,000 and USD 200,000, with a phased rollout timeline of 12-24 months. Supporting technologies like robotic process automation (RPA), collaborative robotics, and edge computing are also discussed as enablers of successful DT adoption. The manifesto closes by identifying critical research gaps, including the need for longitudinal studies evaluating DTs' clinical and economic impacts, integration within existing hospital IT systems, and ethical implications of AI-assisted diagnostics. Through this collective vision, we provide a realistic and actionable roadmap to drive the transition toward predictive, efficient, and digitally optimized pathology laboratories.

摘要

本手稿展示了一份由多方面利益相关者委员会制定的宣言,旨在指导数字孪生(DT)技术在病理实验室中的实施。数字孪生在其他领域已经具有变革性,在提高病理实验室的运营效率、诊断准确性和护理质量方面具有巨大潜力。我们对传统工作流程与DT增强型工作流程在关键步骤(包括登记、大体检查、处理、包埋、切片、染色、扫描、诊断和存档)进行了比较分析。该框架突出了可衡量的收益,如标签错误减少多达90%、玻片质量提高20 - 30%以及诊断周转时间减少30 - 50%。除了这些好处,我们还解决了关键的实施挑战,包括前期基础设施成本、员工适应以及数据安全问题。提出了一个实用的分阶段部署策略,以实验室信息系统(LIS)集成、物联网传感器、人工智能模块和强大的数据治理为核心。中型实验室的估计设置成本在10万美元至20万美元之间,分阶段推出的时间表为12 - 24个月。还讨论了机器人流程自动化(RPA)、协作机器人和边缘计算等支持技术作为成功采用DT的推动因素。宣言最后指出了关键的研究差距,包括需要进行纵向研究以评估DT的临床和经济影响、在现有医院IT系统中的集成以及人工智能辅助诊断的伦理影响。通过这一共同愿景,我们提供了一个现实可行的路线图,以推动向预测性、高效和数字化优化的病理实验室转型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验