Liu Pei, Zheng Mengmeng, Wang Yue, Kong Xiang-Yu, Zhao Yingjie, Zhang Mengru, Xu Qun, Jiang Lei, Wen Liping
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
J Am Chem Soc. 2025 Jul 30;147(30):26944-26954. doi: 10.1021/jacs.5c09051. Epub 2025 Jul 18.
The process of photosynthesis in green plants and energy conversion in certain archaea are inseparable from photoregulated ion pumping. Two-dimensional (2D) nanofluidic membranes, emerging as competitive candidates for constructing ion pumps, present intriguing prospects for harvesting light energy. However, the inevitable presence of defects during the synthesis of 2D materials underscores the critical need to understand their impact on ion transport dynamics within nanofluidic systems. Here, we present a chemically engineered asymmetric nanofluidic membrane (ANM) by intercalating molybdenum trioxide (MoO) with controlled oxygen vacancies into graphene oxide laminates, systematically investigating the defect chemistry-governed photo-activated ion transport. Upon photoexcitation, MoO nanosheets exhibit tunable surface plasmon resonance (SPR) through photochemical H intercalation, leading to an augmentation of oxygen vacancies and an elevated concentration of free electrons. These vacancies enrich MoO with excess localized surface electrons, enabling tunable SPR that creates negative charge centers and significantly enhances space charge through defect-induced polarization. Density functional theory (DFT) calculations reveal the atomic-level mechanism of vacancy-enhanced cation transport, showing a notable 188% increase in the adsorption energy of K at MoO surfaces with two vacancy sites compared to one vacancy (-13.66 vs -4.74 eV). Under asymmetric photo irradiation, the system achieves a peak power density of approximately 439.2 W/cm in equilibrium ionic solutions, realizing a photonic-to-ionic energy conversion efficiency of 7.98 × 10% via synergistic effects of defects and plasmonics. Our research pioneers the elucidation of the regulation and underlying mechanisms of intrinsic defects on active ion transport within nanofluidic membranes, while fostering a novel perspective on photon-electron-ion interplay within nanofluidic environments.
绿色植物中的光合作用过程以及某些古细菌中的能量转换都与光调节离子泵密切相关。二维(2D)纳米流体膜作为构建离子泵的有竞争力的候选材料,在收集光能方面展现出诱人的前景。然而,二维材料合成过程中不可避免地会出现缺陷,这凸显了了解其对纳米流体系统中离子传输动力学影响的迫切需求。在此,我们通过将具有可控氧空位的三氧化钼(MoO)插入氧化石墨烯层压板中,制备了一种化学工程不对称纳米流体膜(ANM),系统地研究了缺陷化学控制的光激活离子传输。光激发时,MoO纳米片通过光化学H插入表现出可调谐的表面等离子体共振(SPR),导致氧空位增加和自由电子浓度升高。这些空位使MoO富含过量的局域表面电子,实现可调谐的SPR,产生负电荷中心并通过缺陷诱导极化显著增强空间电荷。密度泛函理论(DFT)计算揭示了空位增强阳离子传输的原子级机制,与一个空位相比,具有两个空位位点的MoO表面上K的吸附能显著增加188%(-13.66对-4.74 eV)。在不对称光照射下,该系统在平衡离子溶液中实现了约439.2 W/cm的峰值功率密度,通过缺陷和等离子体的协同效应实现了7.98×10%的光子到离子的能量转换效率。我们的研究率先阐明了纳米流体膜中本征缺陷对活性离子传输的调控及其潜在机制,同时为纳米流体环境中的光子-电子-离子相互作用提供了新的视角。