Suppr超能文献

在杂散光条件下从模拟视网膜图像中进行深度学习眼像差检索。

Deep learning ocular aberration retrieval from simulated retinal images under straylight.

作者信息

Ntatsis Konstantinos, Christaras Dimitrios, Artal Pablo, Ginis Harilaos

机构信息

Diestia Systems PC, Platonos 77-79, 104 41 Athens, Greece.

Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.

出版信息

Biomed Opt Express. 2025 Jun 11;16(7):2709-2718. doi: 10.1364/BOE.559749. eCollection 2025 Jul 1.

Abstract

The Point Spread Function (PSF) of the human eye is determined by both optical aberrations and straylight. However, accurately retrieving underlying wavefront aberrations from PSF images becomes challenging when straylight is present due to their combined effects in the resulting image. Traditional wavefront sensing techniques struggle to separate these contributions, limiting clinical assessment of optical quality. We propose a deep learning-based method to retrieve the underlying wavefront-aberration from simulated PSFs with straylight. The effect of scatter is implemented as an additional random phase perturbations wavefront. The model can predict the wavefront with high accuracy, achieving one-shot inference in 3 ms. This approach could enable a more comprehensive assessment of ocular optical quality by separating aberration and scatter components from standard PSF measurements.

摘要

人眼的点扩散函数(PSF)由光学像差和杂散光共同决定。然而,由于杂散光和光学像差在最终图像中的综合作用,当存在杂散光时,从PSF图像中准确恢复潜在的波前像差变得具有挑战性。传统的波前传感技术难以区分这些因素的影响,从而限制了对光学质量的临床评估。我们提出了一种基于深度学习的方法,用于从含有杂散光的模拟PSF中恢复潜在的波前像差。散射效应被实现为波前的附加随机相位扰动。该模型能够高精度地预测波前,在3毫秒内实现一次性推理。这种方法可以通过从标准PSF测量中分离像差和散射成分,实现对眼内光学质量更全面的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8607/12265425/a8ccd9a30933/boe-16-7-2709-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验