Suppr超能文献

基于原子尺度密度泛函理论的闪锌矿ZnS带隙调控与量子调制用于下一代材料的研究。

Atomic scale DFT based investigation of tuning and quantum modulation of zinc blende ZnS bandgap for next-generation materials.

作者信息

Arif Suneela

机构信息

Department of Physics, Hazara University (HU) Mansehra Pakistan

出版信息

RSC Adv. 2025 Jul 17;15(31):25349-25361. doi: 10.1039/d5ra02719e. eCollection 2025 Jul 15.

Abstract

This study reveals the electric-field-induced tuning and modulation of electronic bandgap of zinc blende ZnS as potential prospect for the next generation optoelectronics. By employing Generalized Gradient Approximation (GGA) with a Plane-Wave basis set based on the Quantum espresso package, the correlation between electronic bandgap engineering, tuning/switchable modulations with the varying applied electric field strength is established. We unveiled dynamical switching in range from 2.37 eV to 0 eV (at critical field) under the positive field strength of 0.01 V Å to 0.5 V Å, and from 2.41 eV to 1.52 eV under the negative fields strength from -0.01 V Å to -0.5 V Å along the out-of-plane -axis. The valence and conduction bands overlap at a critical field (0.5 V Å) is attributed due to the Mott transition, where electron-electron interactions persuade a transition in behavior from semiconductor to conductor. The partial (PDOS) and total density of states (TDOS) display electric-field-tailored dynamically switching of the sp hybridization into the Zn-3d, Zn-2s and S-2p states. The modulation of local density of states (LDOS), charge density and variation in charge transfer (between Zn and S) further confirm electric-field-induced redistribution of charges between Zn and S atoms. Optical parameters, comprising refractive index (()), absorption coefficient (()), reflectivity (()), extinction co-efficient (()), real ( ()) and imaginary ( )) dielectric function and electron energy loss (ELS)) display field-dependent behavior, signifying the potential of ZnS as a tunable optoelectronic material. These findings validate the feasibility of electric-field-controlled engineering of ZnS properties, paving the way for exciting advancements in the controlled functionalities in semiconductors to design innovative next-generation optoelectronic and photonic devices.

摘要

本研究揭示了闪锌矿ZnS的电场诱导电子带隙调谐和调制,这是下一代光电子学的潜在前景。通过使用基于量子浓缩咖啡包的平面波基组的广义梯度近似(GGA),建立了电子带隙工程、随施加电场强度变化的调谐/可切换调制之间的相关性。我们发现,在0.01 V Å至0.5 V Å的正场强下,沿面外轴的动态切换范围为2.37 eV至0 eV(在临界场),在-0.01 V Å至-0.5 V Å的负场强下,动态切换范围为2.41 eV至1.52 eV。价带和导带在临界场(0.5 V Å)处重叠归因于莫特跃迁,其中电子-电子相互作用促使行为从半导体转变为导体。部分态密度(PDOS)和总态密度(TDOS)显示了电场定制的sp杂化到Zn-3d、Zn-2s和S-2p态的动态切换。局域态密度(LDOS)、电荷密度的调制以及电荷转移(Zn和S之间)的变化进一步证实了电场诱导的Zn和S原子之间电荷的重新分布。光学参数,包括折射率(())、吸收系数(())、反射率(())、消光系数(())、实部( ())和虚部( ))介电函数以及电子能量损失(ELS)显示出与场相关的行为,这表明ZnS作为可调谐光电子材料的潜力。这些发现验证了电场控制ZnS特性工程的可行性,为半导体中可控功能的令人兴奋的进展铺平了道路,以设计创新的下一代光电子和光子器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a3/12268323/16d850ebeeae/d5ra02719e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验