Suppr超能文献

用于CMOS兼容热电器件的外延SiGeSn合金

Epitaxial SiGeSn Alloys for CMOS-Compatible Thermoelectric Devices.

作者信息

Graziosi Patrizio, Marian Damiano, Tomadin Andrea, Roddaro Stefano, Concepción Omar, Tiscareño-Ramírez Jhonny, Kaul Prateek, Corley-Wiciak Agnieszka Anna, Buca Dan, Capellini Giovanni, Virgilio Michele

机构信息

CNR - ISMN, Via P. Gobetti 101, Bologna 40129, Italy.

Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, Pisa 56127, Italy.

出版信息

ACS Appl Energy Mater. 2025 Jun 18;8(13):9075-9082. doi: 10.1021/acsaem.5c00733. eCollection 2025 Jul 14.

Abstract

The integration of thermoelectric devices into mainstream microelectronic technological platforms could be a major breakthrough in various fields within the Green-IT realm. In this article, the thermoelectric properties of heteroepitaxial SiGeSn alloys, an emergent CMOS-compatible material system, are evaluated to assess their possible application in thermoelectric devices. To this purpose, starting from the experimentally low lattice thermal conductivity of SiGeSn/Ge/Si layers of about ∼1 to 2 W/m·K assessed by means of 3-ω measurements, the figure of merits are calculated through the use of Boltzmann transport equation, taking into account the relevant intervalley scattering processes, peculiar of this multivalley material system. Values for the figure of merit exceeding 1 have been obtained for both p- and n-type material at operating temperatures within the 300-400 K range, i.e., at typical on-chip temperatures. In this interval, the predicted power factor also features very competitive values on the order of 20 μW/cm ·K. Our finding indicates that this emergent class of Si-based materials has extremely good prospects for real-world applications and can further stimulate scientific investigation in this ambit.

摘要

将热电器件集成到主流微电子技术平台中可能成为绿色信息技术领域各个方面的一项重大突破。在本文中,对一种新兴的与互补金属氧化物半导体(CMOS)兼容的材料系统——异质外延SiGeSn合金的热电特性进行了评估,以评估其在热电器件中的潜在应用。为此,从通过3-ω测量评估得到的SiGeSn/Ge/Si层约1至2W/m·K的实验低晶格热导率出发,利用玻尔兹曼输运方程计算优值,并考虑到这种多能谷材料系统特有的相关能谷间散射过程。在300 - 400K范围内的工作温度下,即典型的芯片温度下,p型和n型材料的优值均已超过1。在此温度区间内,预测的功率因子也具有非常有竞争力的值,约为20μW/cm·K²。我们的研究结果表明,这种新兴的硅基材料在实际应用中具有极好的前景,并且能够进一步激发该领域的科学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7b/12265006/c5c7fbd378fd/ae5c00733_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验