Concepción Omar, Tiscareño-Ramírez Jhonny, Chimienti Ada Angela, Classen Thomas, Corley-Wiciak Agnieszka Anna, Tomadin Andrea, Spirito Davide, Pisignano Dario, Graziosi Patrizio, Ikonic Zoran, Zhao Qing Tai, Grützmacher Detlev, Capellini Giovanni, Roddaro Stefano, Virgilio Michele, Buca Dan
Peter Gruenberg Institute 9 (PGI-9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, Juelich 52428, Germany.
Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, Pisa 56127, Italy.
ACS Appl Energy Mater. 2024 May 15;7(10):4394-4401. doi: 10.1021/acsaem.4c00275. eCollection 2024 May 27.
CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely GeSn alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for GeSn alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C-100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
对于在片上操作和体温所特有的温度下实现高效能量收集器而言,与互补金属氧化物半导体(CMOS)兼容的材料是可持续绿色计算和超低功耗物联网应用的关键要素。在此背景下,研究了新型IV族半导体(即锗锡合金)的晶格热导率(κ)。通过先进的化学气相沉积法在锗缓冲硅晶片上外延生长锡含量高达14原子百分比的层。通过差分3ω法以电学方式测量了晶格热导率(κ)从锗的55瓦/(米·开尔文)急剧降至锗锡合金的4瓦/(米·开尔文)。对于应变弛豫合金,热导率被证实与层厚度无关,并证实了先前通过光学方法观察到的对锡的依赖性。结合电荷传输特性的数值估计的实验κ值能够捕捉这种准直接带隙材料系统的复杂物理特性,用于评估n型和p型锗锡外延层的热电优值。结果突出了单晶锗锡合金在20℃至100℃温度范围内实现与锗硅合金类似的能量收集能力的巨大潜力,而在该温度范围内没有与硅兼容的半导体。这为在CMOS平台上单片集成热电装置开辟了可能性。