Pérez-Carrasco José Antonio, Serrano Carmen, Leñero-Bardallo Juan Antonio, Bernabeu-Wittel José, Acha Begoña
Universidad de Sevilla, Department of Signal Theory and Communications, Sevilla, Spain.
Universidad de Sevilla, Department of Electronics and Electromagnetism, Sevilla, Spain.
J Biomed Opt. 2025 Jul;30(7):075001. doi: 10.1117/1.JBO.30.7.075001. Epub 2025 Jul 17.
Infantile hemangiomas are one of the most prevalent benign tumors in childhood. Typically, diagnosis relies on visual assessment of area, texture, and color. A few studies have focused on various color attributes in superficial and mixed Infantile hemangioma types, neglecting the deep category. Limited research has explored temperature in the location of hemangioma lesions.
We seek, for the first time, to quickly identify and classify infantile hemangioma lesions using a portable, programmable handheld device. The system aims to (1) replicate a physician's assessment of infantile hemangioma and (2) deliver an easy way to understand automatic diagnosis.
The custom-built device comprises an infrared sensor and a visible light spectrum sensor to assess color and depth through computations of different color and texture features. Over a 3-year period, 53 patients were monitored, and 83 hemangioma images were captured.
The device accurately localized all lesions in real time and classified hemangioma lesions into three primary types using selected color and texture features. Evaluation metrics showed an average sensitivity of 0.8948 and specificity of 0.7313 for an accuracy of 0.7572 and an average sensitivity of 0.7803 and specificity of 0.8720 for an -score of 0.7826 in the three-class classification.
The two-sensor device accurately identifies and categorizes infantile hemangioma lesions, providing a clear automated diagnosis based on computerized features.
婴儿血管瘤是儿童期最常见的良性肿瘤之一。通常,诊断依赖于对面积、质地和颜色的视觉评估。一些研究聚焦于浅表型和混合型婴儿血管瘤的各种颜色特征,而忽略了深部类型。仅有有限的研究探索了血管瘤病变部位的温度。
我们首次尝试使用便携式、可编程手持设备快速识别和分类婴儿血管瘤病变。该系统旨在(1)复制医生对婴儿血管瘤的评估,(2)提供一种易于理解自动诊断的方法。
定制设备包括一个红外传感器和一个可见光谱传感器,通过计算不同的颜色和纹理特征来评估颜色和深度。在3年时间里,对53例患者进行了监测,采集了83张血管瘤图像。
该设备能实时准确地定位所有病变,并利用选定的颜色和纹理特征将血管瘤病变分为三种主要类型。评估指标显示,在三类分类中,平均敏感度为0.8948,特异度为0.7313,准确率为0.7572;对于F1分数为0.7826的情况,平均敏感度为0.7803,特异度为0.8720。
这种双传感器设备能准确识别和分类婴儿血管瘤病变,基于计算机特征提供清晰的自动诊断。