Çöl Bekir, Çiftçi Begüm Hazar, Sezer Kürkçü Merve, Dibek Esra
Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkiye.
Biotechnology Research Center, Muğla Sıtkı Koçman University, Muğla, Turkiye.
Turk J Biol. 2025 Apr 21;49(3):280-291. doi: 10.55730/1300-0152.2745. eCollection 2025.
BACKGROUND/AIM: Boron is an essential micronutrient for plants and certain bacteria, where it plays critical roles in cellular processes at low concentrations. However, elevated levels of boron-containing compounds, such as boric acid, exhibit antimicrobial toxicity. Although the physiological effects of boric acid on bacteria have been partially characterized, its proteome-wide impacts remain poorly elucidated. This study employs a 2D-PAGE-based proteomic approach to investigate how sublethal boric acid stress alters the cytoplasmic proteome of BW25113.
BW25113 cultures were grown to mid-log phase in tryptic soy broth (TSB) and exposed to 70 mM boric acid (a sublethal concentration) or left untreated as a control. Cytoplasmic protein extracts were subjected to 2D-PAGE analysis to identify differentially expressed proteins. Selected protein spots were excised, identified via MALDI-TOF mass spectrometry, and validated by RT-PCR to assess corresponding mRNA expression levels.
Proteomic analysis revealed 12 differentially regulated cytoplasmic proteins under boric acid stress. Upregulated proteins included SodA, KduD, KduI, DeoB, Icd, AceE, RpsM, TdcE, Tuf1, LexA, and LamB, while GatY was downregulated. Functional annotation linked these proteins to oxidative stress defense (SodA), carbohydrate metabolism (KduD, KduI, DeoB), energy production (Icd, AceE), translation (RpsM, Tuf1), and membrane integrity (LamB). RT-PCR validation confirmed transcriptional upregulation of , , and , corroborating proteomic findings. These results suggest that boric acid disrupts metabolic homeostasis, induces oxidative stress, and modulates structural and translational processes in .
This study provides the first proteomic evidence of 's cytoplasmic response to boric acid stress, highlighting its multifaceted effects on metabolic, oxidative, and translational pathways. The upregulation of KduI and KduD, enzymes involved in carbohydrate utilization, points to potential adaptive mechanisms for boron detoxification. Further investigation into these targets could elucidate molecular strategies for bacterial boron tolerance and inform the development of boron-based antimicrobials.
背景/目的:硼是植物和某些细菌必需的微量营养素,在低浓度时它在细胞过程中发挥关键作用。然而,含硼化合物(如硼酸)水平升高会表现出抗菌毒性。尽管硼酸对细菌的生理作用已得到部分表征,但其对蛋白质组的影响仍知之甚少。本研究采用基于二维聚丙烯酰胺凝胶电泳(2D-PAGE)的蛋白质组学方法,以研究亚致死剂量的硼酸胁迫如何改变BW25113的细胞质蛋白质组。
将BW25113培养物在胰蛋白胨大豆肉汤(TSB)中培养至对数中期,然后暴露于70 mM硼酸(亚致死浓度)或不进行处理作为对照。对细胞质蛋白提取物进行二维聚丙烯酰胺凝胶电泳分析,以鉴定差异表达的蛋白质。切下选定的蛋白点,通过基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)进行鉴定,并通过逆转录聚合酶链反应(RT-PCR)进行验证,以评估相应的mRNA表达水平。
蛋白质组学分析显示,在硼酸胁迫下有12种细胞质蛋白受到差异调节。上调的蛋白包括超氧化物歧化酶A(SodA)、2-酮-3-脱氧-6-磷酸葡糖酸脱水酶(KduD)、2-酮-3-脱氧-6-磷酸葡糖酸醛缩酶(KduI)、脱氧核糖-5-磷酸酮糖异构酶(DeoB)、异柠檬酸脱氢酶(Icd)、丙酮酸脱氢酶E1组分(AceE)、核糖体蛋白S13(RpsM)、苏氨酸脱氨酶(TdcE)、延伸因子Tu(Tuf1)、LexA阻遏蛋白(LexA)和外膜孔蛋白LamB,而GatY蛋白下调。功能注释将这些蛋白与氧化应激防御(SodA)、碳水化合物代谢(KduD、KduI、DeoB)、能量产生(Icd、AceE)、翻译(RpsM、Tuf1)和膜完整性(LamB)联系起来。RT-PCR验证证实了、和的转录上调,证实了蛋白质组学研究结果。这些结果表明,硼酸会破坏代谢稳态,诱导氧化应激,并调节BW25113中的结构和翻译过程。
本研究首次提供了BW25113细胞质对硼酸胁迫反应的蛋白质组学证据,突出了其对代谢、氧化和翻译途径的多方面影响。参与碳水化合物利用的KduI和KduD酶的上调,指出了潜在的硼解毒适应机制。对这些靶点的进一步研究可能会阐明细菌耐受硼的分子策略,并为基于硼的抗菌剂的开发提供信息。