Suppr超能文献

单细胞成像技术解析大肠杆菌 LexA 降解阐明调控机制和 SOS 反应异质性。

Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response.

机构信息

Department of Biochemistry, University of Oxford, Oxford, United Kingdom.

出版信息

Nat Microbiol. 2021 Aug;6(8):981-990. doi: 10.1038/s41564-021-00930-y. Epub 2021 Jun 28.

Abstract

The bacterial SOS response represents a paradigm of gene networks controlled by a master transcriptional regulator. Self-cleavage of the SOS repressor LexA induces a wide range of cell functions that are critical for survival and adaptation when bacteria experience stress conditions including DNA repair, mutagenesis, horizontal gene transfer, filamentous growth and the induction of bacterial toxins, toxin-antitoxin systems, virulence factors and prophages. SOS induction is also implicated in biofilm formation and antibiotic persistence. Considering the fitness burden of these functions, it is surprising that the expression of LexA-regulated genes is highly variable across cells and that cell subpopulations induce the SOS response spontaneously even in the absence of stress exposure. Whether this reflects a population survival strategy or a regulatory inaccuracy is unclear, as are the mechanisms underlying SOS heterogeneity. Here, we developed a single-molecule imaging approach based on a HaloTag fusion to directly monitor LexA in live Escherichia coli cells, demonstrating the existence of three main states of LexA: DNA-bound stationary molecules, free LexA and degraded LexA species. These analyses elucidate the mechanisms by which DNA binding and degradation of LexA regulate the SOS response in vivo. We show that self-cleavage of LexA occurs frequently throughout the population during unperturbed growth, rather than being restricted to a subpopulation of cells. This causes substantial cell-to-cell variation in LexA abundances. LexA variability underlies SOS gene-expression heterogeneity and triggers spontaneous SOS pulses, which enhance bacterial survival in anticipation of stress.

摘要

细菌 SOS 反应代表了一个由主转录调控因子控制的基因网络范例。SOS 阻遏物 LexA 的自我切割诱导了广泛的细胞功能,这些功能对于细菌在经历包括 DNA 修复、诱变、水平基因转移、丝状生长和诱导细菌毒素、毒素-抗毒素系统、毒力因子和噬菌体在内的应激条件时的生存和适应至关重要。SOS 诱导也与生物膜形成和抗生素耐药性有关。考虑到这些功能的适应性负担,LexA 调节基因的表达在细胞间具有高度变异性,并且即使在没有应激暴露的情况下,细胞亚群也会自发诱导 SOS 反应,这令人惊讶。这是否反映了种群生存策略或调节不准确,以及 SOS 异质性的机制尚不清楚。在这里,我们开发了一种基于 HaloTag 融合的单分子成像方法,直接监测活大肠杆菌细胞中的 LexA,证明 LexA 存在三种主要状态:与 DNA 结合的固定分子、游离 LexA 和降解的 LexA 物质。这些分析阐明了 DNA 结合和 LexA 降解调节体内 SOS 反应的机制。我们表明,LexA 的自我切割在未受干扰的生长过程中在整个群体中频繁发生,而不是仅限于细胞的亚群。这导致 LexA 丰度在细胞间产生了很大的差异。LexA 的可变性是 SOS 基因表达异质性的基础,并引发自发的 SOS 脉冲,从而增强细菌的生存能力,以应对应激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/312a/7611437/920cdd1dae5c/EMS126658-f005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验