Suppr超能文献

基于化学诱导转录谱、知识图谱和大语言模型的用于增强药物再利用的自适应多视图学习方法

Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models.

作者信息

Yan Yudong, Yang Yinqi, Tong Zhuohao, Wang Yu, Yang Fan, Pan Zupeng, Liu Chuan, Bai Mingze, Xie Yongfang, Li Yuefei, Shu Kunxian, Li Yinghong

机构信息

Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.

The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.

出版信息

J Pharm Anal. 2025 Jun;15(6):101275. doi: 10.1016/j.jpha.2025.101275. Epub 2025 Mar 21.

Abstract

Drug repurposing offers a promising alternative to traditional drug development and significantly reduces costs and timelines by identifying new therapeutic uses for existing drugs. However, the current approaches often rely on limited data sources and simplistic hypotheses, which restrict their ability to capture the multi-faceted nature of biological systems. This study introduces adaptive multi-view learning (AMVL), a novel methodology that integrates chemical-induced transcriptional profiles (CTPs), knowledge graph (KG) embeddings, and large language model (LLM) representations, to enhance drug repurposing predictions. AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning (MVL), matrix factorization, and ensemble optimization techniques to integrate heterogeneous multi-source data. Comprehensive evaluations on benchmark datasets (Fdataset, Cdataset, and Ydataset) and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art (SOTA) methods, achieving superior accuracy in predicting drug-disease associations across multiple metrics. Literature-based validation further confirmed the model's predictive capabilities, with seven out of the top ten predictions corroborated by post-2011 evidence. To promote transparency and reproducibility, all data and codes used in this study were open-sourced, providing resources for processing CTPs, KG, and LLM-based similarity calculations, along with the complete AMVL algorithm and benchmarking procedures. By unifying diverse data modalities, AMVL offers a robust and scalable solution for accelerating drug discovery, fostering advancements in translational medicine and integrating multi-omics data. We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.

摘要

药物重新利用为传统药物开发提供了一种有前景的替代方案,通过确定现有药物的新治疗用途,显著降低了成本和时间线。然而,当前的方法通常依赖于有限的数据源和简单的假设,这限制了它们捕捉生物系统多方面性质的能力。本研究引入了自适应多视图学习(AMVL),这是一种新颖的方法,它整合了化学诱导转录谱(CTP)、知识图谱(KG)嵌入和大语言模型(LLM)表示,以增强药物重新利用预测。AMVL采用了一种创新的相似性矩阵扩展策略,并利用多视图学习(MVL)、矩阵分解和集成优化技术来整合异构多源数据。在基准数据集(F数据集、C数据集和Y数据集)和大规模iDrug数据集上的综合评估表明,AMVL优于现有最先进(SOTA)方法,在多个指标上预测药物 - 疾病关联时实现了更高的准确性。基于文献的验证进一步证实了该模型的预测能力,前十项预测中有七项得到了2011年后证据的证实。为了提高透明度和可重复性,本研究中使用的所有数据和代码都已开源,提供了用于处理CTP、KG和基于LLM的相似性计算的资源,以及完整的AMVL算法和基准测试程序。通过统一不同的数据模态,AMVL为加速药物发现提供了一个强大且可扩展的解决方案,促进转化医学的进步并整合多组学数据。我们旨在激发多源数据集成方面的进一步创新,并支持开发更精确、高效的策略以推进药物发现和转化医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da08/12268076/7fff7f92c6ca/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验