Grupo de Aplicación de Telecomunicaciones Visuales, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae461.
Drug repurposing has emerged as a effective and efficient strategy to identify new treatments for a variety of diseases. One of the most effective approaches for discovering potential new drug candidates involves the utilization of Knowledge Graphs (KGs). This review comprehensively explores some of the most prominent KGs, detailing their structure, data sources, and how they facilitate the repurposing of drugs. In addition to KGs, this paper delves into various artificial intelligence techniques that enhance the process of drug repurposing. These methods not only accelerate the identification of viable drug candidates but also improve the precision of predictions by leveraging complex datasets and advanced algorithms. Furthermore, the importance of explainability in drug repurposing is emphasized. Explainability methods are crucial as they provide insights into the reasoning behind AI-generated predictions, thereby increasing the trustworthiness and transparency of the repurposing process. We will discuss several techniques that can be employed to validate these predictions, ensuring that they are both reliable and understandable.
药物重定位已成为一种有效且高效的策略,可用于确定各种疾病的新治疗方法。发现潜在新药候选物的最有效方法之一是利用知识图谱 (KG)。本文全面探讨了一些最突出的 KG,详细介绍了它们的结构、数据源以及它们如何促进药物重定位。除了 KGs,本文还深入探讨了各种增强药物重定位过程的人工智能技术。这些方法不仅加速了可行药物候选物的识别,还通过利用复杂数据集和先进算法提高了预测的准确性。此外,还强调了药物重定位中可解释性的重要性。可解释性方法至关重要,因为它们提供了对 AI 生成的预测背后推理的深入了解,从而提高了重定位过程的可信度和透明度。我们将讨论可用于验证这些预测的几种技术,以确保它们既可靠又易于理解。