Suppr超能文献

使用机器学习方法对c-MET抑制剂进行支架和构效关系研究。

Scaffold and SAR studies on c-MET inhibitors using machine learning approaches.

作者信息

Zhang Jing, Zhang Mingming, Huang Weiran, Liang Changjie, Xu Wei, Zhang Jinghua, Tu Jun, Agida Innocent Okohi, Cheng Jinke, Wei Dong-Qing, Ma Buyong, Wang Yanjing, Tan Hongsheng

机构信息

Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

出版信息

J Pharm Anal. 2025 Jun;15(6):101303. doi: 10.1016/j.jpha.2025.101303. Epub 2025 Apr 10.

Abstract

Numerous c-mesenchymal-epithelial transition (c-MET) inhibitors have been reported as potential anticancer agents. However, most fail to enter clinical trials owing to poor efficacy or drug resistance. To date, the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed. In this study, we constructed the largest c-MET dataset, which included 2,278 molecules with different structures, by inhibiting the half maximal inhibitory concentration (IC) of kinase activity. No significant differences in drug-like properties were observed between active molecules (1,228) and inactive molecules (1,050), including chemical space coverage, physicochemical properties, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. The higher chemical diversity of the active molecules was downscaled using -distributed stochastic neighbor embedding (-SNE) high-dimensional data. Further clustering and chemical space networks (CSNs) analyses revealed commonly used scaffolds for c-MET inhibitors, such as M5, M7, and M8. Activity cliffs and structural alerts were used to reveal "dead ends" and "safe bets" for c-MET, as well as dominant structural fragments consisting of pyridazinones, triazoles, and pyrazines. Finally, the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules, including at least three aromatic heterocycles, five aromatic nitrogen atoms, and eight nitrogen-oxygen atoms. Overall, our analyses revealed potential structure-activity relationship (SAR) patterns for c-MET inhibitors, which can inform the screening of new compounds and guide future optimization efforts.

摘要

许多c-间充质-上皮转化(c-MET)抑制剂已被报道为潜在的抗癌药物。然而,由于疗效不佳或耐药性,大多数未能进入临床试验。迄今为止,小分子c-MET抑制剂基于支架的化学空间尚未得到分析。在本研究中,我们通过抑制激酶活性的半数最大抑制浓度(IC),构建了最大的c-MET数据集,其中包括2278个具有不同结构的分子。在活性分子(1228个)和非活性分子(1050个)之间,未观察到类药性质的显著差异,包括化学空间覆盖、物理化学性质以及吸收、分布、代谢、排泄和毒性(ADMET)特征。使用分布随机邻域嵌入(-SNE)高维数据对活性分子较高的化学多样性进行了降维。进一步的聚类和化学空间网络(CSN)分析揭示了c-MET抑制剂常用的支架,如M5、M7和M8。活性悬崖和结构警报被用于揭示c-MET的“死胡同”和“安全赌注”,以及由哒嗪酮、三唑和吡嗪组成的主要结构片段。最后,决策树模型精确地指出了构成活性c-MET抑制剂分子所需的关键结构特征,包括至少三个芳香杂环、五个芳香氮原子和八个氮氧原子。总体而言,我们的分析揭示了c-MET抑制剂潜在的构效关系(SAR)模式,可为新化合物的筛选提供信息,并指导未来的优化工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ed/12268054/8ab24f1b1254/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验