Niazov-Elkan Angelica, Lee Huan-Jui, Mafi Sima, Yerragunta Manasa, Rosenhek-Goldian Irit, Penedo Marcos, Fantner Georg, Kossoy Anna, Feldman Yishay, Diskin-Posner Yael, Oron Dan, Vekilov Peter G
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204-4004, USA.
iScience. 2025 Jun 10;28(7):112866. doi: 10.1016/j.isci.2025.112866. eCollection 2025 Jul 18.
How molecular-level understanding of the crystal growth mechanisms and their relation to lattice bonds informs the rational design of crystals with desired shapes and properties has remained elusive. Here we employ theophylline crystals and drive them into classical growth mode, in which the crystals grow molecule-by-molecule and new layers are generated by two-dimensional nucleation. We demonstrate that classical growth allows for controlling the crystal's shape and dimensions. We correlate the anisotropic responses to the supersaturation of the growth rates of crystal layers and crystal faces to the hydrogen and π-π stacking bond chains in the crystal lattice. The obtained insights suggest strategies to direct the crystal shape to either one-dimensional needles or flat sheets. Moreover, we show that crystals that grow by the classical mode of direct monomer incorporation have the potential to regrow and heal once a defect is introduced by mechanical cut or local thermal subliming of crystalline sections.
如何从分子层面理解晶体生长机制及其与晶格键的关系,从而为合理设计具有所需形状和性质的晶体提供指导,这一点仍然难以捉摸。在这里,我们使用茶碱晶体并将其驱动到经典生长模式,在这种模式下,晶体逐个分子地生长,新的层通过二维成核产生。我们证明经典生长允许控制晶体的形状和尺寸。我们将晶体层和晶面生长速率对过饱和度的各向异性响应与晶格中的氢键和π-π堆积键链联系起来。所获得的见解提出了将晶体形状导向一维针状或平板状的策略。此外,我们表明,通过直接单体掺入的经典模式生长的晶体,一旦通过机械切割或晶体部分的局部热升华引入缺陷,就有可能重新生长和愈合。