Suppr超能文献

非经典机制不可逆抑制β-血晶的生长。

Nonclassical mechanisms to irreversibly suppress β-hematin crystal growth.

机构信息

William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA.

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.

出版信息

Commun Biol. 2023 Jul 27;6(1):783. doi: 10.1038/s42003-023-05046-z.

Abstract

Hematin crystallization is an essential element of heme detoxification of malaria parasites and its inhibition by antimalarial drugs is a common treatment avenue. We demonstrate at biomimetic conditions in vitro irreversible inhibition of hematin crystal growth due to distinct cooperative mechanisms that activate at high crystallization driving forces. The evolution of crystal shape after limited-time exposure to both artemisinin metabolites and quinoline-class antimalarials indicates that crystal growth remains suppressed after the artemisinin metabolites and the drugs are purged from the solution. Treating malaria parasites with the same agents reveals that three- and six-hour inhibitor pulses inhibit parasite growth with efficacy comparable to that of inhibitor exposure during the entire parasite lifetime. Time-resolved in situ atomic force microscopy (AFM), complemented by light scattering, reveals two molecular-level mechanisms of inhibitor action that prevent β-hematin growth recovery. Hematin adducts of artemisinins incite copious nucleation of nonextendable nanocrystals, which incorporate into larger growing crystals, whereas pyronaridine, a quinoline-class drug, promotes step bunches, which evolve to engender abundant dislocations. Both incorporated crystals and dislocations are known to induce lattice strain, which persists and permanently impedes crystal growth. Nucleation, step bunching, and other cooperative behaviors can be amplified or curtailed as means to control crystal sizes, size distributions, aspect ratios, and other properties essential for numerous fields that rely on crystalline materials.

摘要

血红素结晶是疟原虫血红素解毒的一个重要环节,其抑制作用是抗疟药物的常见治疗途径。我们在仿生条件下进行了体外实验,证明由于高结晶驱动力下激活的独特协同机制,血红素晶体生长会被不可逆地抑制。在有限时间内暴露于青蒿素代谢物和喹啉类抗疟药后,晶体形状的演变表明,在青蒿素代谢物和药物从溶液中被清除后,晶体生长仍受到抑制。用相同的药物处理疟原虫,结果表明,三小时和六小时的抑制剂脉冲抑制寄生虫生长的效果与抑制剂在寄生虫整个生命周期内的暴露效果相当。时间分辨原位原子力显微镜(AFM)结合光散射,揭示了两种抑制剂作用的分子水平机制,可防止β-血红素生长恢复。青蒿素类药物的血红素加合物会引发大量不可扩展纳米晶体的成核,这些晶体并入更大的生长晶体中,而喹啉类药物扑疟喹啉则会促进阶跃束的形成,从而产生大量位错。已知掺入晶体和位错都会引起晶格应变,这种应变会持续存在并永久阻碍晶体生长。成核、阶跃束的形成和其他协同行为可以被放大或抑制,以控制晶体尺寸、尺寸分布、纵横比和其他对依赖晶体材料的众多领域至关重要的性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0684/10374632/863623a4cfd1/42003_2023_5046_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验