Suppr超能文献

二维与三维中的蛋白质二聚化:几何变构增强结合亲和力。

Protein dimerization in 2D vs 3D: Geometric allostery enhances binding affinity.

作者信息

Jhaveri Adip, Chhibber Smriti, Kulkarni Nandan, Johnson Margaret E

机构信息

TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA.

出版信息

J Chem Phys. 2025 Jul 21;163(3). doi: 10.1063/5.0275282.

Abstract

Dimerization underpins all macromolecular assembly processes, both on and off the membrane. While the strength of dimerization, KD, is commonly quantified in solution (3D), many proteins, such as the soluble BAR (Bin/Amphiphysin/Rvs) proteins, also reversibly dimerize while bound to a membrane surface (2D). The ratio of dissociation constants, h=KD2DKD3D, defines a lengthscale that is essential for determining whether dimerization is more favorable in solution or on the membrane surface, particularly for these proteins that reversibly transition between 3D and 2D. While purely entropic rigid-body estimates of h (hRIGID apply well to transmembrane adhesion proteins, we show here using MD simulations that even moderate flexibility in BAR domains dramatically alters the free energy landscape, driving enhanced stability of the native dimer in 2D. By simulating BAR homodimerization in three environments, (1) solution (3D), (2) bound to a lipid bilayer (2D), and (3) fully solvated but restrained to a pseudo membrane (2D), we show that both 2D environments induce backbone configurations that produce more enthalpically favorable dimer states. Comparing with theory, we show that this surface-induced or geometric allostery violates the rigid-body estimates to drive h ≪ hRIGID. Remarkably, contact with an explicit lipid bilayer is not necessary to drive these changes, as the solvated pseudo membrane induces this same result. This outcome depends on the stability of the protein interaction, as a parameterization with exceptionally stable binding in 3D does not improve in 2D. Our approach provides simple metrics to move beyond rigid-body estimates of 2D affinities and fully assess whether allosteric effects stabilize dimerization on membranes.

摘要

二聚化是所有大分子组装过程的基础,无论是在膜上还是膜外。虽然二聚化强度KD通常在溶液(三维)中进行量化,但许多蛋白质,如可溶性BAR(Bin/Amphiphysin/Rvs)蛋白,在与膜表面结合时(二维)也会可逆地二聚化。解离常数的比值h = KD2D/KD3D定义了一个长度尺度,这对于确定二聚化在溶液中还是在膜表面更有利至关重要,特别是对于那些在三维和二维之间可逆转变的蛋白质。虽然对h的纯熵刚体估计(hRIGID)很好地适用于跨膜粘附蛋白,但我们在此使用分子动力学模拟表明,即使BAR结构域有适度的灵活性也会显著改变自由能景观,从而增强二维中天然二聚体的稳定性。通过在三种环境中模拟BAR同型二聚化,(1)溶液(三维),(2)与脂质双层结合(二维),以及(3)完全溶剂化但受限在伪膜上(二维),我们表明这两种二维环境都会诱导产生更有利于焓的二聚体状态的主链构象。与理论比较,我们表明这种表面诱导或几何变构违反了刚体估计,从而导致h ≪ hRIGID。值得注意的是,驱动这些变化并不需要与明确的脂质双层接触,因为溶剂化的伪膜也会产生相同的结果。这个结果取决于蛋白质相互作用的稳定性,因为在三维中具有异常稳定结合的参数化在二维中并没有改善。我们的方法提供了简单的指标,以超越二维亲和力的刚体估计,并全面评估变构效应是否稳定膜上的二聚化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验