Qian Hanxin, Wu Zhan, Huang Zhouyu, Lu Menglu, Xiang Jiayuan, Tu Fangfang, Jin Zheyu, Xu Jianping, Gan Yongping, He Xinping, Huang Hui, Xia Xinhui, Xia Yang, Zhang Wenkui, Zhang Jun
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
Narada Power Source Co., Ltd., Hangzhou 310030, China.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43169-43180. doi: 10.1021/acsami.5c11042. Epub 2025 Jul 18.
Sodium-ion batteries (SIBs) are promising for large-scale energy storage due to their high cost-effectiveness and safety. Alloy anodes exhibit significantly higher specific capacities compared to those of carbonaceous anode materials, holding great promise for enhancing the energy density of SIBs. However, their practical application is severely hindered by substantial volume expansion, sluggish reaction kinetics, and continuous fracture reformation of the solid-electrolyte interphase (SEI). Here, a multifunctional composite binder system was designed for the Sn anode, which was composed of poly(ethylene oxide) (PEO), sodium alginate (SA), and sodium bis(trifluoromethylsulfonyl)imide (NaTFSI). The PEO-SA-NaTFSI (PSN) binder integrates ternary synergistic functions: robust adhesion between the active material and current collector, enhanced Na transport kinetics, and formation of a stable NaF-rich SEI. Therefore, the Sn-PSN anode achieves an outstanding sodium storage performance with a high capacity of 583.4 mA h g at a current density of 10 A g and 77% capacity retention after 1500 cycles. In addition, the Sn-PSN||NaV(PO) full battery can maintain 81% capacity after 200 cycles with an electrode energy density of 169.0 W h kg. This work provides a multifunctional binder design strategy with broad application prospects for high-performance anodes of SIBs.
钠离子电池(SIBs)因其高性价比和安全性而在大规模储能方面具有广阔前景。与碳质负极材料相比,合金负极表现出显著更高的比容量,在提高SIBs的能量密度方面具有巨大潜力。然而,其实际应用受到大量体积膨胀、缓慢的反应动力学以及固体电解质界面(SEI)的持续断裂再形成的严重阻碍。在此,设计了一种用于Sn负极的多功能复合粘结剂体系,它由聚环氧乙烷(PEO)、海藻酸钠(SA)和双(三氟甲基磺酰)亚胺钠(NaTFSI)组成。PEO-SA-NaTFSI(PSN)粘结剂整合了三元协同功能:活性材料与集流体之间的强粘附力、增强的Na传输动力学以及形成稳定的富含NaF的SEI。因此,Sn-PSN负极在10 A g的电流密度下实现了583.4 mA h g的高容量和出色的储钠性能,在1500次循环后容量保持率为77%。此外,Sn-PSN||NaV(PO)全电池在200次循环后可保持81%的容量,电极能量密度为169.0 W h kg。这项工作为高性能SIBs负极提供了一种具有广阔应用前景的多功能粘结剂设计策略。