Suppr超能文献

纳米填料增强弹性体中裂纹尖端周围的机械调制应变诱导结晶

Mechanically Modulated Strain-Induced Crystallization around Crack Tips in Nanofiller-Reinforced Elastomers.

作者信息

Mai Thanh-Tam, Yasui Tomohiro, Tanaka Ruito, Jotatsu Yuki, Masunaga Hiroyasu, Kabe Taizo, Tsunoda Katsuhiko, Sakurai Shinichi, Urayama Kenji

机构信息

Graduate School of Engineering, Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43690-43701. doi: 10.1021/acsami.5c10041. Epub 2025 Jul 18.

Abstract

Understanding how materials respond to extreme local deformation is critical for advancing soft material design. In elastomers that combine nanofiller reinforcement with strain-induced crystallization (SIC), we reveal the interplay of these mechanisms near crack tips by integrating microscale digital image correlation with scanning wide-angle X-ray diffraction. By analyzing over 15,000 diffraction patterns, we mapped local strain and crystallinity fields. Nanofillers significantly expand the SIC-active zone by nearly an order of magnitude and considerably reduce the crystallization onset strain from 130 to 65%. However, the strain amplification typically induced by fillers diminishes as the crack tip is approached, indicating a mechanical compensation effect. This spatial modulation reflects a dynamic balance among local crystallinity, deformation, and filler-mediated stress transfer. We identify a dual-slope strain singularity linked to crystallinity gradients and quantify an empirical correlation between crystallinity and the major principal strain throughout the SIC-active region. These findings show that SIC-generated crystallites serve as in situ reinforcements, mitigating strain concentrations and enhancing damage tolerance. Our results provide mechanistic insights into SIC-driven toughening in filled elastomers and offer guiding principles for designing soft materials with superior mechanical robustness.

摘要

了解材料如何响应极端局部变形对于推进软材料设计至关重要。在将纳米填料增强与应变诱导结晶(SIC)相结合的弹性体中,我们通过将微观数字图像相关技术与扫描广角X射线衍射相结合,揭示了裂纹尖端附近这些机制的相互作用。通过分析超过15000个衍射图案,我们绘制了局部应变和结晶度场。纳米填料将SIC活性区显著扩展了近一个数量级,并将结晶起始应变从130%大幅降低至65%。然而,随着接近裂纹尖端,通常由填料引起的应变放大作用会减弱,这表明存在一种机械补偿效应。这种空间调制反映了局部结晶度、变形和填料介导的应力传递之间的动态平衡。我们确定了与结晶度梯度相关的双斜率应变奇异性,并量化了整个SIC活性区域内结晶度与主应变之间的经验相关性。这些发现表明,SIC产生的微晶作为原位增强剂,减轻了应变集中并提高了损伤容限。我们的结果为填充弹性体中SIC驱动的增韧提供了机理见解,并为设计具有卓越机械稳健性的软材料提供了指导原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验