文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过孟德尔随机化和综合生物信息学分析鉴定喉鳞状细胞癌的生物标志物

Identification of biomarkers for Laryngeal squamous cell carcinoma through Mendelian randomization and integrated bioinformatics analysis.

作者信息

Zhang Pengjian, Chen Weizhang, Chen Kai, Ye Yuanhang, Wu Weijun

机构信息

Department of Otorhinolaryngology, Meizhou People's Hospital, No. 63 Huangtang Road, Meijaing District, Meizhou City, Guangdong Province, China.

出版信息

Discov Oncol. 2025 Jul 18;16(1):1364. doi: 10.1007/s12672-025-03114-w.


DOI:10.1007/s12672-025-03114-w
PMID:40679719
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12274188/
Abstract

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is a common head and neck tumor with an increasing incidence rate and limited therapeutic efficacy in advanced stages. METHODS: This study integrated multi-omics data from multiple databases to comprehensively analyze the role of pan-apoptosis-related genes (PANRGs) in the prognosis of LSCC. RNA-seq data from 114 LSCC and 12 normal samples were collected from the TCGA-HNSC cohort as a training set, while 270 LSCC samples were obtained from the GSE65858 dataset as a validation set. Additionally, copy number variation (CNV) data were retrieved from the UCSC Xena database, and single-cell RNA sequencing (scRNA-seq) data from two LSCC samples were obtained from the GSE150321 dataset. Differential expression analysis was performed using the R package "limma" to identify 33 differentially expressed PANRGs (DEPANRGs) with a significance threshold of 0.05. Potential pathways were explored through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Metascape enrichment analyses. A prognostic model was constructed based on nine key genes (DNAJC3, FUNDC1, GATA3, NLRP3, PMAIP1, TGFB2, TIMP1, TIMP2, and TNFRSF1B) using the Lasso-Cox method, and its predictive accuracy was evaluated by Kaplan-Meier (KM) analysis and receiver operating characteristic (ROC) curves. The differences in immune landscapes between high-risk and low-risk groups were assessed using the CIBERSORT algorithm, and drug sensitivity was analyzed using the "oncoPredict" package. Finally, the expression patterns of prognostic genes in scRNA-seq data were explored through pseudotime analysis and gene set scoring methods. RESULTS: Differential expression analysis identified 33 DEPANRGs, which were significantly enriched in immune response, inflammation, and apoptosis-related pathways. The constructed prognostic model exhibited robust predictive power, with area under the curve (AUC) values of 0.769 and 0.857 in the training and validation sets, respectively. Risk scores were significantly correlated with clinical factors such as gender and N stage (extent of regional lymph node metastasis). Immune landscape analysis revealed distinct patterns of immune cell infiltration and functional scores between high-risk and low-risk groups, with significant differences in the infiltration of monocytes and neutrophils. Drugs such as Acetalax, Entinostat, and OTX015 exhibited significant differences in efficacy between the high and low-risk groups. Single-cell RNA sequencing analysis identified monocytes as the cell type with the highest prognostic gene scores, which interacted significantly with other cell populations through pathways such as MIF, annexin, and CXCL. Differences in pathway activity and transcription factor (TF) activity were also observed between high-expression and low-expression groups. qRT-PCR experiments further validated the significant expression differences of prognostic genes between LSCC and control groups. CONCLUSION: This integrative approach comprehensively elucidated the role of pan-apoptosis-related genes in LSCC. The constructed risk model has significant clinical application value in prognostic prediction, immune landscape assessment, and drug sensitivity analysis, and has the potential to guide precision treatment strategies for LSCC patients. These findings may help advance personalized treatment plans and improve the prognosis of patients with LSCC.

摘要

背景:喉鳞状细胞癌(LSCC)是一种常见的头颈部肿瘤,其发病率呈上升趋势,且晚期治疗效果有限。 方法:本研究整合了来自多个数据库的多组学数据,以全面分析泛凋亡相关基因(PANRGs)在LSCC预后中的作用。从TCGA-HNSC队列中收集了114例LSCC样本和12例正常样本的RNA-seq数据作为训练集,同时从GSE65858数据集中获取270例LSCC样本作为验证集。此外,从UCSC Xena数据库中检索了拷贝数变异(CNV)数据,并从GSE150321数据集中获得了两个LSCC样本的单细胞RNA测序(scRNA-seq)数据。使用R包“limma”进行差异表达分析,以识别33个差异表达的PANRGs(DEPANRGs),显著性阈值为0.05。通过基因本体论(GO)、京都基因与基因组百科全书(KEGG)和Metascape富集分析探索潜在途径。使用Lasso-Cox方法基于九个关键基因(DNAJC3、FUNDC1、GATA3、NLRP3、PMAIP1、TGFB2、TIMP1、TIMP2和TNFRSF1B)构建预后模型,并通过Kaplan-Meier(KM)分析和受试者工作特征(ROC)曲线评估其预测准确性。使用CIBERSORT算法评估高风险和低风险组之间免疫景观的差异,并使用“oncoPredict”包分析药物敏感性。最后,通过伪时间分析和基因集评分方法探索scRNA-seq数据中预后基因的表达模式。 结果:差异表达分析确定了33个DEPANRGs,它们在免疫反应、炎症和凋亡相关途径中显著富集。构建的预后模型具有强大的预测能力,训练集和验证集的曲线下面积(AUC)值分别为0.769和0.857。风险评分与性别和N分期(区域淋巴结转移程度)等临床因素显著相关。免疫景观分析揭示了高风险和低风险组之间免疫细胞浸润和功能评分的不同模式,单核细胞和中性粒细胞的浸润存在显著差异。Acetalax、恩替诺特和OTX015等药物在高风险和低风险组之间的疗效存在显著差异。单细胞RNA测序分析确定单核细胞是预后基因评分最高的细胞类型,其通过MIF、膜联蛋白和CXCL等途径与其他细胞群体显著相互作用。高表达和低表达组之间还观察到途径活性和转录因子(TF)活性的差异。qRT-PCR实验进一步验证了LSCC与对照组之间预后基因的显著表达差异。 结论:这种综合方法全面阐明了泛凋亡相关基因在LSCC中的作用。构建的风险模型在预后预测、免疫景观评估和药物敏感性分析中具有重要的临床应用价值,有可能为LSCC患者指导精准治疗策略。这些发现可能有助于推进个性化治疗方案并改善LSCC患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/04d46f194556/12672_2025_3114_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/b40d6f4eef6d/12672_2025_3114_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/b3eb9fd5b11c/12672_2025_3114_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/7f8be605c47c/12672_2025_3114_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/5e93fdbafe5c/12672_2025_3114_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/151e72d1fc1d/12672_2025_3114_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/92f81392cf2b/12672_2025_3114_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/2d9bc849786c/12672_2025_3114_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/cdf7951504ef/12672_2025_3114_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/04d46f194556/12672_2025_3114_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/b40d6f4eef6d/12672_2025_3114_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/b3eb9fd5b11c/12672_2025_3114_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/7f8be605c47c/12672_2025_3114_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/5e93fdbafe5c/12672_2025_3114_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/151e72d1fc1d/12672_2025_3114_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/92f81392cf2b/12672_2025_3114_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/2d9bc849786c/12672_2025_3114_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/cdf7951504ef/12672_2025_3114_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9bb/12274188/04d46f194556/12672_2025_3114_Fig9_HTML.jpg

相似文献

[1]
Identification of biomarkers for Laryngeal squamous cell carcinoma through Mendelian randomization and integrated bioinformatics analysis.

Discov Oncol. 2025-7-18

[2]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

[3]
Identification of a novel prognostic gene signature in pleural mesothelioma: a study based on The Cancer Genome Atlas database and experimental validation.

Transl Cancer Res. 2025-5-30

[4]
Integrated proteomics and transcriptomics analysis reveals key regulatory genes between ER-positive/PR-positive and ER-positive/PR-negative breast cancer.

BMC Cancer. 2025-7-1

[5]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

[6]
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.

Front Oncol. 2025-6-3

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Identification of a telomere-related gene signature for the prognostic and immune landscape prediction in head and neck squamous cell carcinoma by integrated analysis of machine learning and Mendelian randomization.

Medicine (Baltimore). 2025-4-18

[9]
The molecular sub-type and the development and validation of a prognosis prediction model based on endocytosis-related genes for hepatocellular carcinoma.

J Gastrointest Oncol. 2025-6-30

[10]
Development of a prognostic model for overall survival in neuroblastoma based on Schwann cell-specific genes, clinical predictors, and MYCN amplification.

Transl Cancer Res. 2025-5-30

本文引用的文献

[1]
CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics.

Nat Protoc. 2025-1

[2]
Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma.

Cancers (Basel). 2024-5-27

[3]
PD-L1-expressing tumor-associated macrophages are immunostimulatory and associate with good clinical outcome in human breast cancer.

Cell Rep Med. 2024-2-20

[4]
The artificial intelligence and machine learning in lung cancer immunotherapy.

J Hematol Oncol. 2023-5-24

[5]
Tumor microenvironment signaling and therapeutics in cancer progression.

Cancer Commun (Lond). 2023-5

[6]
Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment.

Front Immunol. 2023

[7]
Resolution Potential of Necrotic Cell Death Pathways.

Int J Mol Sci. 2022-12-20

[8]
Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma assessed by single-cell RNA sequencing.

J Cancer Res Clin Oncol. 2023-8

[9]
CAR T Cell Locomotion in Solid Tumor Microenvironment.

Cells. 2022-6-20

[10]
Tumor-Infiltrating PD-L1+ Neutrophils Induced by GM-CSF Suppress T Cell Function in Laryngeal Squamous Cell Carcinoma and Predict Unfavorable Prognosis.

J Inflamm Res. 2022-2-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索