Eldesouky Hassan E, Jones Richard M, Mohammed Shabber, Xing Enming, Li Pui-Kai, Sherman David R
Department of Microbiology, University of Washington, Seattle, Washington 98109, United States.
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.
ACS Infect Dis. 2025 Aug 8;11(8):2265-2275. doi: 10.1021/acsinfecdis.5c00298. Epub 2025 Jul 18.
In (Mtb), persisters are genotypically drug-sensitive bacteria that nonetheless survive antibiotic treatment. Persisters contribute to prolonged TB treatment duration and relapse risk, highlighting the need for new therapeutic strategies to effectively eliminate these tolerant subpopulations. In this study, we screened 2,336 FDA-approved compounds to identify agents that enhance the sterilizing activity of standard anti-TB drugs and prevent the regrowth of persisters. Netupitant (NTP), an FDA-approved antiemetic, emerged as a promising candidate. In combination with isoniazid (INH) and rifampicin (RIF), NTP eliminated viable Mtb cells, achieving a >6-log reduction in colony-forming units (CFUs), compared to the 2.5-log reduction observed with INH-RIF alone. NTP also demonstrated broad-spectrum efficacy, enhancing the activity of multiple TB drugs, including ethambutol, moxifloxacin, amikacin, and bedaquiline. Notably, NTP retained its potency under hypoxic and caseum-mimicking conditions, both of which are known to enrich for non-replicating, drug-tolerant cells. The mammalian target of NTP, the G protein-coupled receptor NK-1, is absent in bacteria, raising the possibility that the NTP target in bacteria is novel. To begin assessing this possibility, we performed transcriptomics and found that NTP significantly upregulates multiple oxidative stress response-associated genes, while downregulating pathways linked to protein synthesis, electron transport chain activities, and ATP synthesis. While further studies are required to decipher mechanisms of action and the resistance profile of NTP, and to assess its in vivo efficacy, these findings underscore its potential as a promising adjunct to existing TB therapies.
在结核分枝杆菌(Mtb)中,持留菌是基因上对药物敏感但仍能在抗生素治疗中存活的细菌。持留菌会导致结核病治疗时间延长和复发风险增加,这凸显了需要新的治疗策略来有效清除这些耐受亚群。在本研究中,我们筛选了2336种美国食品药品监督管理局(FDA)批准的化合物,以鉴定能增强标准抗结核药物杀菌活性并防止持留菌再生长的药物。奈妥吡坦(NTP)是一种FDA批准的止吐药,成为了一个有前景的候选药物。与异烟肼(INH)和利福平(RIF)联合使用时,NTP消除了存活的Mtb细胞,使菌落形成单位(CFU)减少了>6个对数,而单独使用INH-RIF时观察到的减少量为2.5个对数。NTP还表现出广谱疗效,增强了多种抗结核药物的活性,包括乙胺丁醇、莫西沙星、阿米卡星和贝达喹啉。值得注意的是,NTP在缺氧和模拟干酪的条件下仍保持其效力,这两种条件都已知会富集非复制性、耐药物细胞。NTP的哺乳动物靶点,即G蛋白偶联受体NK-1,在细菌中不存在,这增加了NTP在细菌中的靶点是新靶点的可能性。为了开始评估这种可能性,我们进行了转录组学研究,发现NTP显著上调了多个与氧化应激反应相关的基因,同时下调了与蛋白质合成、电子传递链活性和ATP合成相关的途径。虽然需要进一步研究来破译NTP的作用机制和耐药谱,并评估其体内疗效,但这些发现强调了其作为现有结核病治疗有前景辅助药物的潜力。