Suppr超能文献

迈向负责任的人工智能治理:平衡医疗保健领域中人工智能的多利益相关方观点。

Toward responsible AI governance: Balancing multi-stakeholder perspectives on AI in healthcare.

作者信息

Rozenblit Leon, Price Amy, Solomonides Anthony, Joseph Amanda L, Koski Eileen, Srivastava Gyana, Labkoff Steven, Bray David, Lopez-Gonzalez Monica, Singh Reva, deBronkart Dave, Barr Paul J, Szolovits Peter, Dattani Kiran, Jaffe Charles, Fridsma Douglas, Baris Russell, Leftwich Russell, Stolper Robert, Weiner Mark G, Pastor Nuria, Luque Unai Sanchez, Lin Baihan, Thuy Bui Tien Thi, Oladimeji Bilikis, Williams Tayler, Jackson Gretchen Purcell, Hsueh Pei-Yun Sabrina, Quintana Yuri

机构信息

Q.E.D. Institute, New Haven, CT, USA; Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, USA; Yale School of Management, New Haven, CT, USA.

The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; BMJ, London, UK.

出版信息

Int J Med Inform. 2025 Nov;203:106015. doi: 10.1016/j.ijmedinf.2025.106015. Epub 2025 Jun 19.

Abstract

INTRODUCTION

The rapid integration of artificial intelligence (AI) into healthcare presents significant governance challenges, requiring balanced approaches that safeguard safety, efficacy, equity, and trust (SEET). This study proposes a cognitive framework to guide AI governance, addressing tradeoffs between speed, scope, and capability.

OBJECTIVE

To develop a structured governance model that harmonizes stakeholder perspectives, focusing on multi-dimensional challenges and ethical principles essential for AI in healthcare.

METHODS

A multidisciplinary team convened at the Blueprints for Trust conference, organized by the American Medical Informatics Association (AMIA), and the Division of Clinical Informatics at Beth Israel Deaconess Medical Center. Following extensive discussions with 190 participants across sectors, three governance models were identified to address specific domains: (1) Clinical Decision Support (CDS), (2) Real-World Evidence (RWE), (3) Consumer Health (CH).

RESULTS

Three governance models emerged, tailored to CDS, RWE, and CH domains. Key recommendations include establishing a Health AI Consumer Consortium for patient-centered oversight, initiating voluntary accreditation and certification frameworks, and piloting risk-level-based standards. These models balance rapid adaptation with SEET-focused safeguards through transparency, inclusivity, and ongoing learning.

CONCLUSION

A proactive, constraint-based governance framework is critical for responsible AI integration in healthcare. This structured, multi-stakeholder approach provides a roadmap for ethical, transparent governance that can evolve with technological advancements, enhancing trust and safety in healthcare AI applications.

摘要

引言

人工智能(AI)迅速融入医疗保健领域带来了重大的治理挑战,需要采取平衡的方法来保障安全、疗效、公平和信任(SEET)。本研究提出了一个认知框架来指导人工智能治理,解决速度、范围和能力之间的权衡问题。

目的

开发一个结构化的治理模型,协调利益相关者的观点,关注医疗保健领域人工智能至关重要的多维度挑战和伦理原则。

方法

一个多学科团队在美国医学信息学会(AMIA)和贝斯以色列女执事医疗中心临床信息学部组织的“信任蓝图”会议上召开会议。在与190名跨部门参与者进行广泛讨论后,确定了三种治理模型以解决特定领域:(1)临床决策支持(CDS),(2)真实世界证据(RWE),(3)消费者健康(CH)。

结果

出现了三种针对CDS、RWE和CH领域量身定制的治理模型。关键建议包括建立一个以患者为中心的健康人工智能消费者联盟进行监督,启动自愿认证和认可框架,并试点基于风险水平的标准。这些模型通过透明度、包容性和持续学习,在快速适应与以SEET为重点的保障措施之间取得平衡。

结论

一个积极主动、基于约束的治理框架对于医疗保健领域负责任地整合人工智能至关重要。这种结构化的多利益相关者方法提供了一个道德、透明治理的路线图,它可以随着技术进步而发展,增强医疗保健人工智能应用中的信任和安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验