Suppr超能文献

迈向消费者健康领域负责任人工智能治理的多利益相关方进程。

Towards a Multi-Stakeholder process for developing responsible AI governance in consumer health.

作者信息

Rozenblit Leon, Price Amy, Solomonides Anthony, Joseph Amanda L, Srivastava Gyana, Labkoff Steven, deBronkart Dave, Singh Reva, Dattani Kiran, Lopez-Gonzalez Monica, Barr Paul J, Koski Eileen, Lin Baihan, Cheung Erika, Weiner Mark G, Williams Tayler, Thuy Bui Tien Thi, Quintana Yuri

机构信息

Q.E.D. Institute, New Haven, CT, United States; Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, United States; Yale School of Management, New Haven, CT, United States.

The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; BMJ, London, United Kingdom.

出版信息

Int J Med Inform. 2025 Mar;195:105713. doi: 10.1016/j.ijmedinf.2024.105713. Epub 2024 Nov 22.

Abstract

INTRODUCTION

AI is big and moving fast into healthcare, creating opportunities and risks. However, current approaches to governance focus on high-level principles rather than tailored recommendations for specific domains like consumer health. This gap risks unintended consequences from generic guidelines misapplied across contexts and from providing answers before agreeing on the questions.

OBJECTIVE

Our objective is to explore pragmatic multi-stakeholder approaches to govern consumer-facing health AI. The aims are to (1) establish an approach tailored for consumer health AI governance and (2) identify key constraints and desirable model characteristics.

METHODS

This paper synthesizes insights informed by a 4-month multidisciplinary expert consensus process with nearly 200 participants. The deliberations provided guidance for the development of the proposed governance models in consumer health AI.

RESULTS

(1) A Shared View of Consensus: A process for consumer health AI governance should limit the scope and incorporate multi-stakeholder perspectives centered on patient needs. Desirable model characteristics include adaptability, patient empowerment, and transparency. (2) Recommended Collaborative Process: A pathway for effective governance should begin by forming a Health AI Consumer Consortium (HAIC) representing patients and aligning incentives across stakeholders.

CONCLUSIONS

While examples focus on the United States healthcare system, core themes around incorporating consumer voices, enabling transparency, and balancing innovation with thoughtful oversight while avoiding overambitious scope will have relevance globally. As consumer AI spreads worldwide, the multi-stakeholder alignment and patient empowerment principles proposed here may offer productive ways to ensure AI for consumers is safe, effective, equitable, and trustworthy (SEET).

摘要

引言

人工智能发展迅速且规模庞大,正快速进入医疗保健领域,带来了机遇和风险。然而,当前的治理方法侧重于高层次原则,而非针对消费者健康等特定领域的量身定制建议。这种差距可能导致通用指南在不同情境下被错误应用以及在问题尚未明确时就给出答案而产生意外后果。

目标

我们的目标是探索务实的多利益相关方方法来治理面向消费者的健康人工智能。目的是(1)建立一种针对消费者健康人工智能治理的量身定制方法,以及(2)确定关键制约因素和理想的模型特征。

方法

本文综合了近200名参与者参与的为期4个月的多学科专家共识过程所形成的见解。这些讨论为消费者健康人工智能中拟议的治理模型的开发提供了指导。

结果

(1)共识的共同观点:消费者健康人工智能治理过程应限制范围,并纳入以患者需求为中心的多利益相关方视角。理想的模型特征包括适应性、患者赋权和透明度。(2)推荐的协作过程:有效的治理途径应首先组建一个代表患者的健康人工智能消费者联盟(HAIC),并使各利益相关方的激励措施保持一致。

结论

虽然示例聚焦于美国医疗保健系统,但围绕纳入消费者声音、实现透明度以及在进行深思熟虑的监督时平衡创新与避免范围过大等核心主题在全球都具有相关性。随着消费者人工智能在全球范围内传播,本文提出的多利益相关方协调和患者赋权原则可能提供有效的方法,以确保面向消费者的人工智能是安全、有效、公平且可信的(SEET)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验