Tobón Ezequiel, Riaño-Umbarila Lidia, Flores Humberto, Gutierrez Michelle, Soberón Xavier, Becerril-Lujan Baltazar, Ramírez Octavio T, Rudiño-Piñera Enrique
Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México.
Investigadora por México, CONAHCYT. Instituto de Biotecnología, Universidad Nacional Autónoma de México, México.
Protein Expr Purif. 2025 Nov;235:106781. doi: 10.1016/j.pep.2025.106781. Epub 2025 Jul 17.
Production of the receptor binding domain, RBD, variants of SARS-CoV-2, has been necessary to understand their interaction with the human receptor ACE2 and to develop alternative strategies against COVID-19. Affordable bacterial production can aid in these efforts and offer alternatives to address the ongoing emergence of new variants. Expressing recombinant RBD in E. coli could provide a valuable alternative if the challenges related to disulfide bond formation, low solubility, and the absence of glycosylation capabilities are addressed in this heterologous expression system. In this study, five representative RBD variants were expressed in E. coli BL21 (two versions of the RBD Wuhan sequence (Wt), Delta, Omicron BA.2, and Omicron JN.1). The resulting inclusion bodies were solubilized using guanidine chloride and refolded in the presence of a buffer containing the redox couple GSH-GSSG and L-arginine monohydrochloride. Purification was achieved through size-exclusion chromatography. These purified RBD variants were analyzed and compared to the RBD with the Wuhan sequence and the Omicron BA.5 variant, both produced in Chinese Hamster Ovary cells, regarding their ability to bind to ACE2 and using surface plasmon resonance, SPR, studies. The strategy outlined in this work did not include expression studies or a complete comparison of the expression yields obtained in relation to other expression systems. However, it clearly demonstrates the feasibility of obtaining various RBD variants, capable of binding to ACE2, starting from inclusion bodies, and exhibiting comparable affinities to those RBD variants produced in eukaryotic cells. This approach provides an additional option to enhance the existing tools available for research laboratories studying interactions between biologically active RBD variants and ACE2.
为了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)受体结合域(RBD)变体与人受体血管紧张素转换酶2(ACE2)的相互作用,并制定对抗2019冠状病毒病(COVID-19)的替代策略,生产这些变体很有必要。经济实惠的细菌生产有助于这些努力,并为应对新变体的不断出现提供替代方案。如果在这个异源表达系统中解决与二硫键形成、低溶解度和缺乏糖基化能力相关的挑战,在大肠杆菌中表达重组RBD可能会提供一个有价值的替代方案。在本研究中,在大肠杆菌BL21中表达了五个代表性的RBD变体(RBD武汉序列的两个版本(野生型)、德尔塔、奥密克戎BA.2和奥密克戎JN.1)。使用氯化胍溶解得到的包涵体,并在含有氧化还原对谷胱甘肽-氧化型谷胱甘肽(GSH-GSSG)和盐酸L-精氨酸的缓冲液存在下进行重折叠。通过尺寸排阻色谱法实现纯化。对这些纯化的RBD变体进行了分析,并与在中国仓鼠卵巢细胞中产生的具有武汉序列的RBD和奥密克戎BA.5变体进行了比较,研究了它们结合ACE2的能力,并使用表面等离子体共振(SPR)进行了研究。本工作中概述的策略不包括表达研究或与其他表达系统相比获得的表达产量的完整比较。然而,它清楚地证明了从包涵体中获得能够结合ACE2的各种RBD变体的可行性,并且这些变体表现出与在真核细胞中产生的RBD变体相当的亲和力。这种方法为增强研究生物活性RBD变体与ACE2之间相互作用的研究实验室现有的工具提供了一个额外的选择。