Yang Tao, Zhu Linhe, Shen Shuling, He Le
School of Mathematical Sciences, Jiangsu University, Zhenjiang, China.
School of Mathematical Sciences, Jiangsu University, Zhenjiang, China.
Math Biosci. 2025 Sep;387:109502. doi: 10.1016/j.mbs.2025.109502. Epub 2025 Jul 16.
This paper primarily explores the dynamics of reaction-diffusion systems with advection effects on discrete networks and establishes a corresponding infectious disease transmission model incorporating delay effects. Initially, we consider the conditions for the existence of the equilibrium point and linearly approximate the time delay near this equilibrium point. Then we discuss the necessary conditions for Turing instability under various constraints based on the approximate system. We also introduce two types of lower-order network structures. In one of these lower-order networks, we discuss the directional movement of two different populations. To further analyze the dynamic behavior on different networks, we construct a special higher-order network based on another lower-order network. In addition, we use optimal control to solve the problem of parameter identification. We conduct extensive numerical simulations to study the impact of advection effects and higher-order networks on system dynamics, pattern parameter identification under unknown conditions, and model fitting and prediction based on actual data, which validate the model's effectiveness and practical utility.
本文主要探讨具有平流效应的离散网络上反应扩散系统的动力学,并建立了一个包含延迟效应的相应传染病传播模型。首先,我们考虑平衡点存在的条件,并在该平衡点附近对时间延迟进行线性近似。然后基于近似系统讨论在各种约束下图灵不稳定性的必要条件。我们还引入了两种类型的低阶网络结构。在其中一种低阶网络中,我们讨论两种不同种群的定向移动。为了进一步分析不同网络上的动态行为,我们基于另一种低阶网络构建了一个特殊的高阶网络。此外,我们使用最优控制来解决参数识别问题。我们进行了广泛的数值模拟,以研究平流效应和高阶网络对系统动力学的影响、未知条件下的模式参数识别以及基于实际数据的模型拟合和预测,这些验证了模型的有效性和实际效用。