Suppr超能文献

从数学建模角度量化教师对教育中采用人工智能的准备程度

Quantifying teachers' readiness for artificial intelligence adoption in education: a mathematical modeling perspective.

作者信息

Ayanwale Musa Adekunle, Idowu Kabir Oluwatobi, Adelana Owolabi Paul, Shosanya Sideeqoh Oluwaseun, Falebita Oluwanife Segun, Adewale Kayode A

机构信息

Department of Mathematics Education, College of Education, University of South Africa, Pretoria, South Africa.

Department of Mathematics, Faculty of Science, Purdue University, West Lafayette, USA.

出版信息

Sci Rep. 2025 Jul 18;15(1):26043. doi: 10.1038/s41598-025-08018-x.

Abstract

We developed a mathematical model based on the classical SEIR (Susceptible-Exposed-Infective-Recovered) framework to predict teachers' readiness to adopt Artificial Intelligence (AI) in educational settings, with a specific focus on Nigeria. In this context, we reinterpret the compartments as follows: Unaware population (S) represents teachers who are not yet aware of AI's potential in education; Aware (E) includes teachers who are informed but undecided about AI adoption; Adopters (I) are those who have begun integrating AI into their teaching practices; and Discontinued Users (R) are teachers who previously used AI but have ceased due to resource constraints or lack of institutional support. We meticulously analyzed the model's properties, including positivity, boundedness, and stability, to ensure the accuracy and applicability of the results. Additionally, a comprehensive sensitivity analysis was performed to identify key parameters influencing the dynamics of AI adoption. Numerical simulations were utilized to demonstrate the effects of these parameters on the teacher population over time. Our results reveal that a higher teacher attrition rate decreases the unaware population initially but leads to a resurgence after a critical threshold is crossed. Furthermore, the rapid transition from awareness to adoption was instrumental in accelerating AI integration, whereas sustained resource availability emerged as a crucial determinant for maintaining long-term adoption. This study provides valuable insights into the nuanced dynamics of AI adoption among educators, highlighting the necessity for targeted interventions and effective resource allocation to facilitate successful AI integration in teaching. The findings have significant implications for policymakers and educational institutions aiming to promote the adoption of AI-enhanced pedagogical practices, underscoring the importance of strategic planning and support mechanisms to foster a conducive environment for technology-driven educational advancements.

摘要

我们基于经典的SEIR(易感-暴露-感染-康复)框架开发了一个数学模型,以预测教师在教育环境中采用人工智能(AI)的准备情况,特别关注尼日利亚。在此背景下,我们对各个部分重新进行如下解释:未意识到的人群(S)代表尚未意识到AI在教育中的潜力的教师;已了解的人群(E)包括已了解但尚未决定是否采用AI的教师;采用者(I)是那些已开始将AI融入其教学实践的人;而停止使用者(R)是那些以前使用过AI但由于资源限制或缺乏机构支持而停止使用的教师。我们仔细分析了模型的性质,包括正性、有界性和稳定性,以确保结果的准确性和适用性。此外,还进行了全面的敏感性分析,以确定影响AI采用动态的关键参数。利用数值模拟来展示这些参数随时间对教师群体的影响。我们的结果表明,较高的教师流失率最初会减少未意识到的人群,但在超过一个关键阈值后会导致其再次出现。此外,从了解到采用的快速转变有助于加速AI的整合,而持续的资源可用性则成为维持长期采用的关键决定因素。本研究为教育工作者采用AI的细微动态提供了有价值的见解,强调了有针对性的干预措施和有效资源分配对于促进教学中成功整合AI的必要性。这些发现对旨在促进采用AI增强教学实践的政策制定者和教育机构具有重大意义,强调了战略规划和支持机制对于营造有利于技术驱动的教育进步的环境的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f02/12274347/197e22485311/41598_2025_8018_Fig1_HTML.jpg

相似文献

4
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.
medRxiv. 2025 Jun 27:2025.06.26.25330361. doi: 10.1101/2025.06.26.25330361.
8
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.

本文引用的文献

2
Chatbot application in a 5th grade science course.
Educ Inf Technol (Dordr). 2021;26(5):6241-6265. doi: 10.1007/s10639-021-10627-8. Epub 2021 Jun 17.
3
Time varying networks and the weakness of strong ties.
Sci Rep. 2014 Feb 10;4:4001. doi: 10.1038/srep04001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验