Yi Minghao, Budarin Vitaliy, Yue Hangbo, Tajuelo-Castilla Guillermo, Morales Enrique, Ellis Gary J, Shuttleworth Peter S
Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/ Juan de La Cierva 3, 28006 Madrid, Spain; Depto. de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/ Juan de La Cierva 3, 28006 Madrid, Spain.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138456. doi: 10.1016/j.jcis.2025.138456. Epub 2025 Jul 16.
Lignin, an abundant industrial by-product, has gained attention as a sustainable precursor for porous carbon electrodes in supercapacitors due to its intrinsic aromaticity and high carbon content. While nitrogen doping is known to enhance electrochemical properties, its impact on lignin char activation mechanisms and porosity development remains underexplored. This study reports a novel, microwave-assisted nitrogen doping strategy using ethanolamine, followed by optimised chemical activation leading to the formation of highly porous carbons with enhanced charge storage capabilities. The activated carbon synthesised at an optimal NaOH-to-char weight ratio of 3:1 exhibits a uniformly distributed pore structure, as confirmed by scanning electron microscopy (SEM), along with a high specific surface area of 2749 m g and a pore volume of 1.48 cm g. Elemental Analysis, Raman spectroscopy, and X-ray Photoelectron Spectroscopy provides information on the thermal transformation of nitrogen species upon pyrolysis, and their differential roles in the activation process. Partial least squares (PLS) analysis further confirms that nitrogen functionality loss and activator dosage both govern porosity development. Electrochemical testing using a 2 M HSO electrolyte demonstrates a high specific capacitance of 292 F g at 0.1 A g, a remarkable capacitance retention of 90 % after 4000 cycles at 2 A g, and an energy density of 9.2 Wh kg at a power density of 1.1 kW kg. These results further establish nitrogen-enhanced NaOH activation as an effective route for tailoring porosity and enhancing electrochemical performance, offering a sustainable pathway for the revalorization of lignin into high-performance supercapacitor electrode materials.
木质素是一种丰富的工业副产品,由于其固有的芳香性和高碳含量,作为超级电容器中多孔碳电极的可持续前驱体而受到关注。虽然已知氮掺杂可增强电化学性能,但其对木质素炭活化机制和孔隙率发展的影响仍未得到充分研究。本研究报告了一种使用乙醇胺的新型微波辅助氮掺杂策略,随后进行优化的化学活化,从而形成具有增强电荷存储能力的高度多孔碳。在最佳NaOH与炭的重量比为3:1的条件下合成的活性炭,经扫描电子显微镜(SEM)证实具有均匀分布的孔结构,同时具有2749 m²/g的高比表面积和1.48 cm³/g的孔体积。元素分析、拉曼光谱和X射线光电子能谱提供了热解过程中氮物种的热转化信息,以及它们在活化过程中的不同作用。偏最小二乘法(PLS)分析进一步证实,氮官能团损失和活化剂用量均控制孔隙率发展。使用2 M H₂SO₄电解质进行的电化学测试表明,在0.1 A/g时具有292 F/g的高比电容,在2 A/g下4000次循环后电容保持率高达90%,在功率密度为1.1 kW/kg时能量密度为9.2 Wh/kg。这些结果进一步确立了氮增强的NaOH活化作为一种调整孔隙率和增强电化学性能的有效途径,为将木质素再利用为高性能超级电容器电极材料提供了一条可持续的途径。