Tan Weixi, Duan Rongfang, Zeng Chengcheng, Yang Ziwei, Dai Li, Xu Tingting, Zhu Ling, Sun Danghong
School of Nursing and Public Health, Yangzhou University, Yangzhou, China.
Subei People's Hospital, Yangzhou, China.
Nurs Crit Care. 2025 Jul;30(4):e70116. doi: 10.1111/nicc.70116.
Myocardial infarction (MI) and atrial fibrillation (AF), a common complication during hospitalisation of critically ill MI patients, have a complex and close bidirectional relationship, and the two frequently occur together.
To develop a nomogram to predict the risk of in-hospital mortality in critically ill patients with MI and AF.
For this retrospective cohort research, we selected 1240 critically ill patients with AF and MI from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) (version 3.1) database. A 7:3 random division of the dataset was made into training and test sets. LASSO regression plus 10-fold cross-validation was used to screen predictors, and multivariate logistic regression was used to build prediction models using the screened predictors. We assessed our outcome model using the calibration curve and the area under the receiver operating characteristic curve (AUROC). We assessed the clinical usefulness of the predictive models using decision curve analysis (DCA).
This study included 1240 patients with both MI and AF, of whom 212 died during hospitalisation, yielding a mortality rate of 17.1%. The final seven predictors were chronic obstructive pulmonary disease, continuous renal replacement therapy, metoprolol, vasopressor use, red blood cell distribution width, anion gap and blood urea nitrogen. The model achieved an Area under the receiver operating characteristic curve (AUC) of 0.802 in the training set and 0.814 in the test set. Both calibration and decision curves demonstrated good model performance.
For patients with MI and AF, this nomogram offers an early evaluation of the risk of inpatient death.
By utilising risk prediction algorithms, nurses may precisely evaluate the risk of early mortality in patients with MI and AF promptly and execute targeted preventative interventions. This method enhances nursing decision-making and resource distribution, demonstrating clinical significance in critical care practice.
心肌梗死(MI)和心房颤动(AF)是重症心肌梗死患者住院期间常见的并发症,二者存在复杂且密切的双向关系,常同时发生。
建立一种列线图,以预测合并心肌梗死和心房颤动的重症患者的院内死亡风险。
在这项回顾性队列研究中,我们从重症监护医学信息数据库-IV(MIMIC-IV)(版本3.1)中选取了1240例合并心房颤动和心肌梗死的重症患者。将数据集按7:3随机分为训练集和测试集。采用LASSO回归加10倍交叉验证筛选预测因子,并使用筛选出的预测因子通过多变量逻辑回归建立预测模型。我们使用校准曲线和受试者工作特征曲线下面积(AUROC)评估我们的结局模型。我们使用决策曲线分析(DCA)评估预测模型的临床实用性。
本研究纳入了1240例同时患有心肌梗死和心房颤动的患者,其中212例在住院期间死亡,死亡率为17.1%。最终的七个预测因子为慢性阻塞性肺疾病、持续肾脏替代治疗、美托洛尔、血管升压药的使用、红细胞分布宽度、阴离子间隙和血尿素氮。该模型在训练集中的受试者工作特征曲线下面积(AUC)为)为0.802,在测试集中为0.814。校准曲线和决策曲线均显示模型性能良好。
对于心肌梗死和心房颤动患者,该列线图可对住院死亡风险进行早期评估。
通过使用风险预测算法,护士可以及时准确地评估心肌梗死和心房颤动患者的早期死亡风险,并实施针对性的预防干预措施。这种方法增强了护理决策和资源分配,在重症护理实践中具有临床意义。