重症监护病房中慢性阻塞性肺疾病合并高碳酸血症呼吸衰竭患者死亡风险列线图预测模型的构建与验证

Construction and validation of a nomogram prediction model for death risk in patients with chronic obstructive pulmonary disease complicated by hypercapnic respiratory failure in the intensive care unit.

作者信息

Zhang Ye, Chen Hao, Hu Shiyu, Chen Chengshui, Chen Wenyu

机构信息

Department of Health Management Center, Affiliated Hospital of Jiaxing University, China.

Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, China.

出版信息

Respir Med. 2025 Aug-Sep;245:108188. doi: 10.1016/j.rmed.2025.108188. Epub 2025 Jun 1.

Abstract

BACKGROUND

A nomogram prediction model was developed to estimate the death risk in patients with chronic obstructive pulmonary disease (COPD) complicated by hypercapnic respiratory failure (HRF). The prediction performance and clinical applicability were validated.

METHODS

The clinical data of 2454 COPD patients with HRF from the MIMIC-IV (Medical Information Mart for Intensive Care IV, Version 3.0) database were included and randomized into a training set (n = 1717) and a validation set (n = 737). A nomogram prediction model for the death risk was constructed using two methods: the least absolute shrinkage and selection operator (LASSO) regression analysis and the multifactorial logistic regression. The model was evaluated and validated using several analytical methods, including receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and Kaplan-Meier (KM) curves.

RESULTS

The findings indicated that age, red cell distribution width, white blood cell count, acute Physiology Score III, partial pressure of oxygen, lung cancer, vasopressor use, and lack of mechanical ventilation were independent predictors for death in COPD patients with HRF (P < 0.05). The nomogram prognosis model demonstrated that the area under the ROC curve (AUC) for predicting the death risk within 30, 60, and 90 days was 0.767 (0.738-0.796), 0.750 (0.721-0.779), and 0.737 (0.708-0.767), respectively. Calibration plots and DCA curves demonstrated strong consistency and favorable clinical applicability.

CONCLUSION

A nomogram incorporating 8 variables was developed to predict the death risk in COPD patients with HRF. It is a simple, convenient, and relatively accurate tool that can be used to guide clinical decision-making and enhance patients' outcomes.

摘要

背景

开发了一种列线图预测模型,以估计慢性阻塞性肺疾病(COPD)合并高碳酸血症呼吸衰竭(HRF)患者的死亡风险。对该预测模型的性能和临床适用性进行了验证。

方法

纳入多中心重症医学信息库(MIMIC-IV,版本3.0)中2454例COPD合并HRF患者的临床资料,并随机分为训练集(n = 1717)和验证集(n = 737)。采用两种方法构建死亡风险列线图预测模型:最小绝对收缩和选择算子(LASSO)回归分析和多因素逻辑回归。使用多种分析方法对模型进行评估和验证,包括受试者工作特征(ROC)曲线、校准曲线、决策曲线分析(DCA)和Kaplan-Meier(KM)曲线。

结果

研究结果表明,年龄、红细胞分布宽度、白细胞计数、急性生理学评分III、氧分压、肺癌、血管活性药物使用和未进行机械通气是COPD合并HRF患者死亡的独立预测因素(P < 0.05)。列线图预后模型显示,预测30、60和90天内死亡风险的ROC曲线下面积(AUC)分别为0.767(0.738-0.796)、0.750(0.721-0.779)和0.737(0.708-0.767)。校准图和DCA曲线显示出较强的一致性和良好的临床适用性。

结论

开发了一种包含8个变量的列线图,用于预测COPD合并HRF患者的死亡风险。它是一种简单、方便且相对准确的工具,可用于指导临床决策并改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索